679 resultados para fibre sensor
Resumo:
The aim of the research work described in this thesis was to investigate the interrogation of fibre optic sensors using "off the shelf optical components and equipment developed mainly for the telecommunications industry. This provides a cost effective way of bringing fibre optic sensor systems to within the price range of their electro-mechanical counterparts. The research work focuses on the use of an arrayed waveguide grating, an acousto-optic tuneable filter and low-coherence interferometry to measure dynamic strain and displacement using fibre Bragg grating and interferometric sensors. Based on the intrinsic properties of arrayed waveguide gratings and acousto-optic tuneable filters used in conjunction with interferometry, fibre Bragg gratings and interferometric sensors a number of novel fibre optic sensor interrogation systems have been realised. Special single mode fibre, namely, high-birefringence fibre has been employed to implement a dual-beam interrogating interferometer. The first interrogation scheme is based on an optical channel monitor, which is an arrayed waveguide grating with integral photo-detectors providing a number of amplified electrical outputs. It is used to interrogate fibre Bragg grating and interferometric sensors. Using the properties of polarisation maintainability in high-birefringent fibre an interrogating interferometer was realised by winding a length of the fibre around a piezoelectric modulator generating a low-frequency carrier signal. The system was used to interrogate both fibre Bragg grating and interferometric sensors. Finally, the use of an acousto-optic tuneable filter is employed to interrogate fibre Bragg gratings. The device is used to generate a very high frequency carrier signal at the output of an optical interferometer.
Resumo:
This thesis describes a detailed study of advanced fibre grating devices using Bragg (FBG) and long-period (LPG) structures and their applications in optical communications and sensing. The major contributions presented in this thesis are summarised below. One of the most important contributions from the research work presented in this thesis is a systematic theoretical study of many distinguishing structures of fibre gratings. Starting from the Maxwell equations, the coupled-mode equations for both FBG and LPG were derived and the mode-overlap factor was analytically discussed. Computing simulation programmes utilising matrix transform method based on the models built upon the coupled-mode equations were developed, enabling simulations of spectral response in terms of reflectivity, bandwidth, sidelobes and dispersion of gratings of different structures including uniform and chirped, phase-shifted, Moiré, sampled Bragg gratings, phase-shifted and cascaded long-period gratings. Although the majority of these structures were modelled numerically, analytical expressions for some complex structures were developed with a clear physical picture. Several apodisation functions were proposed to improve sidelobe suppression, which guided effective production of practical devices for demanding applications. Fibre grating fabrication is the other major part involved in the Ph.D. programme. Both the holographic and scan-phase-mask methods were employed to fabricate Bragg and long-period gratings of standard and novel structures. Significant improvements were particularly made in the scan-phase-mask method to enable the arbitrarily tailoring of the spectral response of grating devices. Two specific techniques - slow-shifting and fast-dithering the phase-mask implemented by a computer controlled piezo - were developed to write high quality phase-shifted, sampled and apodised gratings. A large number of LabVIEW programmes were constructed to implement standard and novel fabrication techniques. In addition, some fundamental studies of grating growth in relating to the UV exposure and hydrogenation induced index were carried out. In particular, Type IIa gratings in non-hydrogenated B/Ge co-doped fibres and a re-generated grating in hydrogenated B/Ge fibre were investigated, showing a significant observation of thermal coefficient reduction. Optical sensing applications utilising fibre grating devices form the third major part of the research work presented in this thesis. Several experiments of novel sensing and sensing-demodulating were implemented. For the first time, an intensity and wavelength dual-coding interrogation technique was demonstrated showing significantly enhanced capacity of grating sensor multiplexing. Based on the mode-splitting measurement, instead of using conventional wavelength-shifting detection technique, successful demonstrations were also made for optical load and bend sensing of ultra-high sensitivity employing LPG structures. In addition, edge-filters and low-loss high-rejection bandpass filters of 50nm stop-band were fabricated for application in optical sensing and high-speed telecommunication systems
Resumo:
Through the application of novel signal processing techniques we are able to measure physical measurands with both high accuracy and low noise susceptibility. The first interrogation scheme is based upon a CCD spectrometer. We compare different algorithms for resolving the Bragg wavelength from a low resolution discrete representation of the reflected spectrum, and present optimal processing methods for providing a high integrity measurement from the reflection image. Our second sensing scheme uses a novel network of sensors to measure the distributive strain response of a mechanical system. Using neural network processing methods we demonstrate the measurement capabilities of a scalable low-cost fibre Bragg grating sensor network. This network has been shown to be comparable with the performance of existing fibre Bragg grating sensing techniques, at a greatly reduced implementation cost.
Resumo:
A long period grating (LPG) written in a standard optical fibre was modified by using a femtosecond laser to induce an asymmetric change in the cladding's refractive index. This device produced blue and red wavelength shifts depending on the orientation of applied curvature, with maximum sensitivities of -1.6 nm m and +3.8 nm m, suggesting that this type of LPG may be useful as a shape sensor.
Resumo:
A novel, direction-sensitive bending sensor based on an asymmetric fiber Bragg grating (FBG) inscribed by an infrared femtosecond laser was demonstrated. The technique is based on tight transverse confinement of the femto-inscribed structures and can be directly applied in conventional, untreated singlemode fibers. The FBG structure was inscribed by an amplified, titanium sapphire laser system. The grating cross-section was elongated along the direction of the laser beam with the transverse dimensions of approximately 1 by 2 μm. It was suggested that the sensitivity of the device can be improved by inscribing smaller spatial features and by implementing more complex grating designs aimed at maximizing the effect of strain.
Resumo:
A fully distributed temperature sensor consisting of a chirped fibre Bragg grating has been demonstrated. By fitting a numerical model of the grating response including temperature change, position and width of localized heating applied to the grating, we achieve measurements of these parameters to within 2.2 K, 149 µm and 306 µm of applied values, respectively. Assuming that deviation from linearity is accounted for in making measurement, much higher precision is achievable and the standard deviations for these measurements are 0.6 K, 28.5 µm and 56.0 µm, respectively.
Resumo:
Over the last twenty years, we have been continuously seeing R&D efforts and activities in developing optical fibre grating devices and technologies and exploring their applications for telecommunications, optical signal processing and smart sensing, and recently for medical care and biophotonics. In addition, we have also witnessed successful commercialisation of these R&Ds, especially in the area of fibre Bragg grating (FBG) based distributed sensor network systems and technologies for engineering structure monitoring in industrial sectors such as oil, energy and civil engineering. Despite countless published reports and papers and commercial realisation, we are still seeing significant and novel research activities in this area. This invited paper will give an overview on recent advances in fibre grating devices and their sensing applications with a focus on novel fibre gratings and their functions and grating structures in speciality fibres. The most recent developments in (i) femtosecond inscription for microfluidic/grating devices, (2) tilted grating based novel polarisation devices and (3) dual-peak long-period grating based DNA hybridisation sensors will be discussed.
Resumo:
Common problems encountered in clinical sensing are those of non-biocompatibility, and slow response time of the device. The latter, also applying to chemical sensors, is possibly due to a lack of understanding of polymer support or membrane properties and hence failure to optimise membranes chosen for specific sensor applications. Hydrogels can be described as polymers which swell in water. In addition to this, the presence of water in the polymer matrix offers some control of biocompatibility. They thus provide a medium through which rapid transport of a sensed species to an incorporated reagent could occur. This work considers the feasibility of such a system, leading to the design and construction of an optical sensor test bed. The development of suitable membrane systems and of suitable coating techniques in order to apply them to the fibre optics is described. Initial results obtained from hydrogel coatings implied that the refractive index change in the polymer matrix, due to a change in water content with pH is the major factor contributing to the sensor response. However the presence of the colourimetric reagent was also altering the output signal obtained. An analysis of factors contributing to the overall response, such as colour change and membrane composition were made on both the test bed, via optical response, and on whole membranes via measurement of water content change. The investigation of coatings with low equilibrium water contents, of less than 10% was carried out and in fact a clearer signal response from the test bed was noted. Again these membranes were suprisingly responding via refractive index change, with the reagent playing a primary role in obtaining a sensible or non-random response, although not in a colourimetric fashion. A photographic study of these coatings revealed some clues as to the physical nature of these coatings and hence partially explained this phenomenon. A study of the transport properties of the most successful membrane, on a coated wire electrode and also on the fibre optic test bed, in a series of test environments, indicated that the reagent was possibly acting as an ion exchanger and hence having a major influence on transport and therefore sensor characteristics.
Resumo:
This thesis presents the potential sensing applications of fibre Bragg gratings in polymer optical fibres. Fibre Bragg gratings are fabricated in different kinds of polymer optical fibres, including Poly methyl methacrylate (PMMA) and TOPAS cyclic olefin copolymer based microstructured polymer optical fibres and PMMA based step-index photosensitive polymer optical fibre, using the 325nm continuous wave ultraviolet laser and phase mask technique. The thermal response of fabricated microstructured polymer optical fibre Bragg gratings has been characterized. The PMMA based single mode microstructured polymer optical fibre Bragg gratings exhibit negative non-linear Bragg wavelength shift with temperature, including a quasi-linear region. The thermal sensitivity of such Bragg gratings in the linear region is up to -97pm/°C. A permanent shift in the grating wavelength at room temperature is observed when such gratings are heated above a threshold temperature which can be extended by annealing the fibre before grating inscription. The largest positive Bragg wavelength shift with temperature in transmission is observed in TOPAS based few moded microstructured polymer optical fibre Bragg gratings and the measured temperature sensitivity is 250±0.5pm/°C. Gluing method is developed to maintain stable optical coupling between PMMA based single mode step index polymer optical fibre Bragg gratings and single mode step index silica optical fibre. Being benefit from this success, polymer optical fibre Bragg gratings are able to be characterised for their temperature, humidity and strain sensitivity, which are -48.2±1pm/°C, 38.3±0.5pm per %RH and 1.33±0.04 pm/µ??respectively. These sensitivities have been utilised to achieve several applications. The strain sensitivity of step index polymer optical fibre Bragg grating devices has been exploited in the potential application of the strain condition monitoring of heavy textiles and when being attached to textile specimens with certain type of adhesives. These polymer fibre Bragg grating devices show better strain transfer and lower structure reinforcement than silica optical fibre Bragg grating devices. The humidity sensitivity of step index polymer optical fibre Bragg grating devices is applied to detecting water in jet fuel and is proved to be able to measure water content of less than 20 ppm in Jet fuel. A simultaneous temperature and humidity sensor is also made by attaching a polymer fibre Bragg grating to a silica optical fibre Bragg grating and it shows better humidity measurement accuracy than that of electronic competitors.
Resumo:
Distributive tactile sensing is a method of tactile sensing in which a small number of sensors monitors the behaviour of a flexible substrate which is in contact with the object being sensed. This paper describes the first use of fibre Bragg grating sensors in such a system. Two systems are presented: the first is a one-dimensional metal strip with an array of four sensors, which is capable of detecting the magnitude and position of a contacting load. This system is favourably compared experimentally with a similar system using resistive strain gauges. The second system is a two-dimensional steel plate with nine sensors which is able to distinguish the position and shape of a contacting load, or the positions of two loads simultaneously. This system is compared with a similar system using 16 infrared displacement sensors. Each system uses neural networks to process the sensor data to give information concerning the type of contact. Issues and limitations of the systems are discussed, along with proposed solutions to some of the difficulties.
Resumo:
We describe a demultiplexing scheme for fibre optic Bragg grating sensors in which signal recovery is achieved by locking each sensor grating to a corresponding receiver grating. As a demonstration, the technique is applied to strain and temperature sensing, achieving a resolution of 3.0 µe and 0.2°C, respectively.
Resumo:
Fibre Bragg gratings have been UV inscribed in multimode microstructured polymer optical fibre in both the 1550nm and 800nm spectral regions. Thermally annealing the fibre at 80°C has been shown to shrink the fibre length and as a result a permanent negative Bragg wavelength shift is observed. The blue shift can be tuned between 0-16nm in the 1550nm spectral region and 0-6nm in the 800nm spectral region, depending on the duration the heat is applied before a saturation level is reached and the fibre stops shrinking in the region of 2 hours. Exploiting this, wavelength division multiplexed sensors have been UV inscribed in both the 1550nm and 800nm regions using a single phase mask for each wavelength region. The 800nm sensor takes advantage of the lower attenuation of poly (methyl methacrylate) of 2dB/m compared to 100dB/m at 1550nm.
Resumo:
The initial aim of this project was to develop a non-contact fibre optic based displacement sensor to operate in the harsh environment of a 'Light Gas Gun' (LGG), which can 'fire' small particles at velocities ranging from 1-8.4 km/s. The LGG is used extensively for research in aerospace to analyze the effects of high speed impacts on materials. Ideally the measurement should be made close to the centre of the impact to minimise corruption of the data from edge effects and survive the impact. A further requirement is that it should operate at a stand-off distance of ~ 8cm. For these reasons we chose to develop a pseudo con-focal intensity sensor, which demonstrated resolution comparable with conventional PVDF sensors combined with high survivability and low cost. A second sensor was developed based on 'Fibre Bragg Gratings' (FBG) which although requiring contact with the target the low weight and very small contact area had minimal effect on the dynamics of the target. The FBG was mounted either on the surface of the target or tangentially between a fixed location. The output signals from the FBG were interrogated in time by a new method. Measurements were made on composite and aluminium plates in the LGG and on low speed drop tests. The particle momentum for the drop tests was chosen to be similar to that of the particles used in the LGG.
Resumo:
Fibre Bragg grating sensors are usually expensive to interrogate, and part of this thesis describes a low cost interrogation system for a group of such devices which can be indefinitely scaled up for larger numbers of sensors without requiring an increasingly broadband light source. It incorporates inherent temperature correction and also uses fewer photodiodes than the number or sensors it interrogates, using neural networks to interpret the photodiode data. A novel sensing arrangement using an FBG grating encapsulated in a silicone polymer is presented. This sensor is capable of distinguishing between different surface profiles with ridges 0.5 to 1mm deep and 2mm pitch and either triangular, semicircular or square in profile. Early experiments using neural networks to distinguish between these profiles are also presented. The potential applications for tactile sensing systems incorporating fibre Bragg gratings and neural networks are explored.
Resumo:
The fabrication of in-fibre Bragg gratings (FBGs) and their application as sensors is reported. The strain and temperature characteristic results for a number of chirped and uniform gratings written into three different host fibres are presented. The static and dynamic temperature response of a commercially available temperature compensated grating is reported. A five sensor wavelength division multiplexed fibre Bragg grating strain measurement system with an interrogation rate of 25 Hz and resolution of 10 was constructed. The results from this system are presented. A novel chirped FBG interrogation method was implemented in both the 1.3 and 1.5 m telecommunication windows. Several single and dual strain sensor systems, employing this method, were constructed and the results obtained from each are reported and discussed. These systems are particularly suitable for the measurement of large strain. The results from a system measuring up to 12 m and with a potential measurement range of 30 m are reported. This technique is also shown to give an obtainable resolution of 20 over a measurement range of 5 000 for a dual sensor system. These systems are simple, robust, passive and easy to implement. They offer low cost, high speed and, in the case of multiple sensors, truly simultaneous interrogation. These advantages make this technique ideal for strain sensing in SMART structures. Systems based on this method have been installed in the masts of four superyachts. A system, based on this technique, is currently being developed for the measurement of acoustic waves in carbon composite panels. The results from an alternative method for interrogating uniform FBG sensors are also discussed. Interrogation of the gratings was facilitated by a specifically written asymmetric grating which had a 15 nm long linearly sloped spectral edge. This technique was employed to interrogate a single sensor over a measurement range of 6 m and two sensors over a range of 4.5 me. The results obtained indicated achievable resolutions of 47 and 38 respectively.