832 resultados para fast kinetics
Resumo:
The long performance of an isothermal fixed bed reactor undergoing catalyst poisoning is theoretically analyzed using the dispersion model. First order reaction with dth order deactivation is assumed and the model equations are solved by matched asymptotic expansions for large Peclet number. Simple closed-form solutions, uniformly valid in time, are obtained.
Resumo:
An approximate analytical technique employing a finite integral transform is developed to solve the reaction diffusion problem with Michaelis-Menten kinetics in a solid of general shape. A simple infinite series solution for the substrate concentration is obtained as a function of the Thiele modulus, modified Sherwood number, and Michaelis constant. An iteration scheme is developed to bring the approximate solution closer to the exact solution. Comparison with the known exact solutions for slab geometry (quadrature) and numerically exact solutions for spherical geometry (orthogonal collocation) shows excellent agreement for all values of the Thiele modulus and Michaelis constant.
Resumo:
Analytical expressions are developed for the time-dependent reactant concentration and catalyst activity in an isothermal CSTR with Langmuir-Hinshelwood kinetics of deactivation and reaction. Several parallel and series posioning mechanisms are considered for a reactor which, without poisoning, would operate at a unique steady state. The use of matched asymptotic expansions and abandonment of the usual initial-steady-state assumption give results, valid from startup to final loss of activity, whose accuracy can be improved systematically.
Resumo:
Analytical expressions are derived for the time and magnitude of failure of an isothermal CSTR with substrate-inhibited kinetics, caused by slow catalyst deactivation under three types of parallel and series mechanisms. Reactors operating at high space velocity are found to be most susceptible to early failure and poisoning by product is more dangerous than by reactant. The magnitude of the jump across steady states depends solely on the Langmuir-Hinshelwood kinetic parameters and a detailed analysis of reactor behavior during the jump itself is given.
Resumo:
Evolution strategies are a class of general optimisation algorithms which are applicable to functions that are multimodal, nondifferentiable, or even discontinuous. Although recombination operators have been introduced into evolution strategies, the primary search operator is still mutation. Classical evolution strategies rely on Gaussian mutations. A new mutation operator based on the Cauchy distribution is proposed in this paper. It is shown empirically that the new evolution strategy based on Cauchy mutation outperforms the classical evolution strategy on most of the 23 benchmark problems tested in this paper. The paper also shows empirically that changing the order of mutating the objective variables and mutating the strategy parameters does not alter the previous conclusion significantly, and that Cauchy mutations with different scaling parameters still outperform the Gaussian mutation with self-adaptation. However, the advantage of Cauchy mutations disappears when recombination is used in evolution strategies. It is argued that the search step size plays an important role in determining evolution strategies' performance. The large step size of recombination plays a similar role as Cauchy mutation.
Resumo:
This paper presents a comprehensive and critical review of the mechanisms and kinetics of NO and N2O reduction reaction with coal chars under fluidised-bed combustion conditions (FBC). The heterogeneous reactions of NO and N2O with char/carbon surface have been well recognised as the most important processes in reducing both NOx and N2O in situ FBC. Compared to NO-carbon reactions in FBC, the reactions of N2O with chars have been relatively less understood and studied. Beginning with the overall reaction schemes for both NO and N2O reduction, the paper extensively discusses the reaction mechanisms including the effects of active surface sites. Generally, NO- and N2O-carbon reactions follow a series of step reactions. However, questions remain concerning the role of adsorbed phases of NO and N2O, and the behaviour of different surface sites. Important kinetics factors such as the rate expressions, kinetics parameters as well as the effects of surface area and pore structure are discussed in detail. The main factors influencing the reduction of NO and N2O in FBC conditions are the chemical and physical properties of chars, and the operating parameters of FBC such as temperature, presence of CO, O-2 and pressure. It is shown that under similar conditions, N2O is more readily reduced on the char surface than NO. Temperature was found to be a very important parameter in both NO and N2O reduction. It is generally agreed that both NO- and N2O-carbon reactions follow first-order reaction kinetics with respect to the NO and N2O concentrations. The kinetic parameters for NO and N2O reduction largely depend on the pore structure of chars. The correlation between the char surface area and the reactivities of NO/N2O-char reactions is considered to be of great importance to the determination of the reaction kinetics. The rate of NO reduction by chars is strongly enhanced by the presence of CO and O-2, but these species may not have significant effects on the rate of N2O reduction. However, the presence of these gases in FBC presents difficulties in the study of kinetics since CO cannot be easily eliminated from the carbon surface. In N2O reduction reactions, ash in chars is found to have significant catalytic effects, which must be accounted for in the kinetic models and data evaluation. (C) 1997 Elsevier Science Ltd.
Resumo:
1 The hepatic disposition and metabolite kinetics of a homologous series of O-acyl (acetyl, propionyl, butanoyl, pentanoyl, hexanoyl and octanoyl) esters of salicylic acid (C2SA, C3SA, C4SA, C5SA, C6SA and C8SA, respectively) was determined using a single-pass, in-sills rat liver preparation. 2 The hepatic venous outflow profiles for the parent esters and the generated metabolite, salicylic acid (SA) were analysed by HPLC. Non-parametric moments analysis was used to determine the area under the curve (AUC'), mean transit time (MTT) and normalized variance (CV2) for the parent esters and generated SA. 3 Pregenerated SA ([C-14]-salicylic acid) was injected into each liver with the parent ester to determine its distribution characteristics. 4 The overall recovery of ester plus metabolite was 89% of the ester dose injected and independent of the ester carbon number, suggesting that ester extraction was due to hepatic metabolism to salicylic acid. 5 The metabolite AUC' value increased directly with the lipophilicity of the parent ester (from 0.12 for C2SA to 0.95 for C8SA). By contrast, the parent AUC' decreased with the lipophilicity (from 0.85 for C2SA to zero for C8SA). The metabolite MTT value also showed a trend to increase with the lipophilicity of the parent ester (from 15.72 s for C3SA to 61.97 s for C8SA). However, the parent MTT value shows no significant change across the series. 6 The two-compartment dispersion model was used to derive the kinetic parameters for parent ester, pregenerated SA and generated SA. Consequently, these parameters were used to estimate the values of AUG', MITT and CV2 for the parent ester and metabolite. The moments values obtained using the two-compartment dispersion model show similar trends to the corresponding moments values obtained from the outflow profiles using a non-parametric approach. 7 The more lipophilic aspirin analogues are more confined to the portal circulation after oral administration than aspirin due to their more extensive hepatic elimination avoiding systemic prostacyclin inhibition. Given that aspirin's selectivity as an anti-thrombotic agent has been postulated to be due to selective anti-platelet effects in the portal circulation, the more lipophilic and highly extracted analogues are potentially more selective anti-thrombotic agents than aspirin.
Resumo:
The hepatic disposition and metabolite kinetics of a homologous series of diflunisal O-acyl esters (acetyl, butanoyl, pentanoyl, anti hexanoyl) were determined using a single-pass perfused in situ rat liver preparation. The experiments were conducted using 2% BSA Krebs-Henseleit buffer (pH 7.4), and perfusions were performed at 30 mL/min in each liver. O-Acyl esters of diflunisal and pregenerated diflunisal were injected separately into the portal vein. The venous outflow samples containing the esters and metabolite diflunisal were analyzed by high performance liquid chromatography (HPLC). The normalized outflow concentration-time profiles for each parent ester and the formed metabolite, diflunisal, were analyzed using statistical moments analysis and the two-compartment dispersion model. Data (presented as mean +/- standard error for triplicate experiments) was compared using ANOVA repeated measures, significance level P < 0.05. The hepatic availability (AUC'), the fraction of the injected dose recovered in the outflowing perfusate, for O-acetyldiflunisal (C2D = 0.21 +/- 0.03) was significantly lower than the other esters (0.34-0.38). However, R-N/f(u), the removal efficiency number R-N divided by the unbound fraction in perfusate f(u), which represents the removal efficiency of unbound ester by the liver, was significantly higher for the most lipophilic ester (O-hexanoyldiflunisal, C6D = 16.50 +/- 0.22) compared to the other members of the series (9.57 to 11.17). The most lipophilic ester, C6D, had the largest permeability surface area (PS) product (94.52 +/- 38.20 mt min-l g-l liver) and tissue distribution value VT (35.62 +/- 11.33 mL g(-1) liver) in this series. The MTT of these O-acyl esters of diflunisal were not significantly different from one another. However, the metabolite diflunisal MTTs tended to increase with the increase in the parent ester lipophilicity (11.41 +/- 2.19 s for C2D to 38.63 +/- 9.81 s for C6D). The two-compartment dispersion model equations adequately described the outflow profiles for the parent esters and the metabolite diflunisal formed from the O-acyl esters of diflunisal in the liver.
Resumo:
The identity of the potassium channel underlying the slow, apamin-insensitive component of the afterhyperpolarization current (sl(AHP)) remains unknown. We studied sl(AHP) in CA1 pyramidal neurons using simultaneous whole-cell recording, calcium fluorescence imaging, and flash photolysis of caged compounds. Intracellular calcium concentration ([Ca2+](i)) peaked earlier and decayed more rapidly than sl(AHP). Loading cells with low concentrations of the calcium chelator EGTA slowed the activation and decay of sl(AHP). In the presence of EGTA, intracellular calcium decayed with two time constants. When [Ca2+](i) was increased rapidly after photolysis of DM-Nitrophen, both apamin-sensitive and apamin-insensitive outward currents were activated. The apamin-sensitive current activated rapidly (<20 msec), whereas the apamin-insensitive current activated more slowly (180 msec). The apamin-insensitive current was reduced by application of serotonin and carbachol, confirming that it was caused by sl(AHP) channels. When [Ca2+](i) was decreased rapidly via photolysis of diazo-2, the decay of sl(AHP) was similar to control (1.7 sec). All results could be reproduced by a model potassium channel gated by calcium, suggesting that the channels underlying sl(AHP) have intrinsically slow kinetics because of their high affinity for calcium.
Resumo:
The amygdala is intimately involved in emotional behavior, and its role in the generation of anxiety and conditioned fear is well known. Benzodiazepines, which are commonly used for the relief of anxiety, are thought to act by enhancing the action of the inhibitory transmitter GABA. We have examined the properties of GABA-mediated inhibition in the amygdala. Whole-cell recordings were made from neurons in the lateral division of the central amygdala. Application of GABA evoked a current that reversed at the chloride equilibrium potential. Application of the GABA antagonists bicuculline or SR95531 inhibited the GABA-evoked current in a manner consistent with two binding sites. Stimulation of afferents to neurons in the central amygdala evoked an IPSC that was mediated by the release of GABA. The GABA(A) receptor antagonists bicuculline and picrotoxin failed to completely block the IPSC. The bicuculline-resistant IPSC was chloride-selective and was unaffected by GABA(B)-receptor antagonists. Furthermore, this current was insensitive to modulation by general anesthetics or barbiturates. In contrast to their actions at GABA(A) receptors, diazepam and flurazepam inhibited the bicuculline-resistant IPSC in a concentration-dependent manner. These effects were fully antagonized by the benzodiazepine site antagonist Ro15-1788. We conclude that a new type of ionotropic GABA receptor mediates fast inhibitory transmission in the central amygdala. This receptor may be a potential target for the development of new therapeutic strategies for anxiety disorders.
Resumo:
The small amounts of antibacterial peptides that can be isolated from insects do not allow detailed studies of their range of activity, side-chain sugar requirements, or their conformation, factors that frequently play roles in the mode of action. In this paper, we report the solid-phase step-by-step synthesis of diptericin, an 82-mer peptide, originally isolated from Phormia terranovae. The unglycosylated peptide was purified to homogeneity by conventional reversed-phase high performance liquid chromatography, and its activity spectrum was compared to that Of synthetic unglycosylated drosocin, which shares strong sequence homology with diptericin's N-terminal domain. Diptericin appeared to have antibacterial activity:for only a limited number of Gram-negative bacteria. Diptericin's submicromolar potency against Escherichia coli strains indicated that, in a manner similar to drosocin, the presence of the carbohydrate side chain is not,necessary to kill bacteria. Neither the N-terminal, drosocin-analog fragment, nor the C-terminal, glycine-rich attacin-analog region was active against any of the bacterial strains studied, regardless of whether the Gal-GalNAc disaccharide units were attached. This suggested that the active site of diptericin fell outside the drosocin or attacin homology domains. In addition, the conformation of diptericin did not seem to play a role in the antibacterial activity, as was demonstrated by the complete lack of ordered structure by two-dimensional nuclear magnetic resonance spectroscopy and circular dichroism. Diptericin completely killed bacteria within I h, considerably faster than drosocin and the attacins; unlike some other, fast-acting antibacterial peptides, diptericin did not lyse normal mammalian cells. Taken together, these data suggest diptericin does not belong to any known class of antibacterial peptides.
Resumo:
Fertilisation of eggs of free-spawning marine invertebrates depends on factors affecting sperm concentration in the field and also on gamete characteristics such as egg size. In the free-spawning intertidal ascidian Pyura stolonifera mean egg size increased with maternal size in 2 separate populations. The largest ascidian produced eggs that were, on average, 50% greater in volume than the eggs produced by the smallest individual studied. There was no evidence to suggest that egg density varied with adult size and egg dry organic weight increased with maternal size. The fertilisation kinetics of this species were strongly affected by the variation in egg size, with the eggs of large individuals requiring much less concentrated sperm to achieve maximal levels of fertilisation success than the eggs of small individuals. We suggest that variation in egg size between individuals of different sizes and ages may be an important factor in determining fertilisation success for ascidians of this species.