842 resultados para farm accountancy data network
Resumo:
This article explores how data envelopment analysis (DEA), along with a smoothed bootstrap method, can be used in applied analysis to obtain more reliable efficiency rankings for farms. The main focus is the smoothed homogeneous bootstrap procedure introduced by Simar and Wilson (1998) to implement statistical inference for the original efficiency point estimates. Two main model specifications, constant and variable returns to scale, are investigated along with various choices regarding data aggregation. The coefficient of separation (CoS), a statistic that indicates the degree of statistical differentiation within the sample, is used to demonstrate the findings. The CoS suggests a substantive dependency of the results on the methodology and assumptions employed. Accordingly, some observations are made on how to conduct DEA in order to get more reliable efficiency rankings, depending on the purpose for which they are to be used. In addition, attention is drawn to the ability of the SLICE MODEL, implemented in GAMS, to enable researchers to overcome the computational burdens of conducting DEA (with bootstrapping).
Resumo:
In this paper, we develop a method, termed the Interaction Distribution (ID) method, for analysis of quantitative ecological network data. In many cases, quantitative network data sets are under-sampled, i.e. many interactions are poorly sampled or remain unobserved. Hence, the output of statistical analyses may fail to differentiate between patterns that are statistical artefacts and those which are real characteristics of ecological networks. The ID method can support assessment and inference of under-sampled ecological network data. In the current paper, we illustrate and discuss the ID method based on the properties of plant-animal pollination data sets of flower visitation frequencies. However, the ID method may be applied to other types of ecological networks. The method can supplement existing network analyses based on two definitions of the underlying probabilities for each combination of pollinator and plant species: (1), pi,j: the probability for a visit made by the i’th pollinator species to take place on the j’th plant species; (2), qi,j: the probability for a visit received by the j’th plant species to be made by the i’th pollinator. The method applies the Dirichlet distribution to estimate these two probabilities, based on a given empirical data set. The estimated mean values for pi,j and qi,j reflect the relative differences between recorded numbers of visits for different pollinator and plant species, and the estimated uncertainty of pi,j and qi,j decreases with higher numbers of recorded visits.
Resumo:
We present an intuitive geometric approach for analysing the structure and fragility of T1-weighted structural MRI scans of human brains. Apart from computing characteristics like the surface area and volume of regions of the brain that consist of highly active voxels, we also employ Network Theory in order to test how close these regions are to breaking apart. This analysis is used in an attempt to automatically classify subjects into three categories: Alzheimer’s disease, mild cognitive impairment and healthy controls, for the CADDementia Challenge.
Resumo:
The MATLAB model is contained within the compressed folders (versions are available as .zip and .tgz). This model uses MERRA reanalysis data (>34 years available) to estimate the hourly aggregated wind power generation for a predefined (fixed) distribution of wind farms. A ready made example is included for the wind farm distribution of Great Britain, April 2014 ("CF.dat"). This consists of an hourly time series of GB-total capacity factor spanning the period 1980-2013 inclusive. Given the global nature of reanalysis data, the model can be applied to any specified distribution of wind farms in any region of the world. Users are, however, strongly advised to bear in mind the limitations of reanalysis data when using this model/data. This is discussed in our paper: Cannon, Brayshaw, Methven, Coker, Lenaghan. "Using reanalysis data to quantify extreme wind power generation statistics: a 33 year case study in Great Britain". Submitted to Renewable Energy in March, 2014. Additional information about the model is contained in the model code itself, in the accompanying ReadMe file, and on our website: http://www.met.reading.ac.uk/~energymet/data/Cannon2014/
Dynamic Changes in the Mental Rotation Network Revealed by Pattern Recognition Analysis of fMRI Data
Resumo:
We investigated the temporal dynamics and changes in connectivity in the mental rotation network through the application of spatio-temporal support vector machines (SVMs). The spatio-temporal SVM [Mourao-Miranda, J., Friston, K. J., et al. (2007). Dynamic discrimination analysis: A spatial-temporal SVM. Neuroimage, 36, 88-99] is a pattern recognition approach that is suitable for investigating dynamic changes in the brain network during a complex mental task. It does not require a model describing each component of the task and the precise shape of the BOLD impulse response. By defining a time window including a cognitive event, one can use spatio-temporal fMRI observations from two cognitive states to train the SVM. During the training, the SVM finds the discriminating pattern between the two states and produces a discriminating weight vector encompassing both voxels and time (i.e., spatio-temporal maps). We showed that by applying spatio-temporal SVM to an event-related mental rotation experiment, it is possible to discriminate between different degrees of angular disparity (0 degrees vs. 20 degrees, 0 degrees vs. 60 degrees, and 0 degrees vs. 100 degrees), and the discrimination accuracy is correlated with the difference in angular disparity between the conditions. For the comparison with highest accuracy (08 vs. 1008), we evaluated how the most discriminating areas (visual regions, parietal regions, supplementary, and premotor areas) change their behavior over time. The frontal premotor regions became highly discriminating earlier than the superior parietal cortex. There seems to be a parcellation of the parietal regions with an earlier discrimination of the inferior parietal lobe in the mental rotation in relation to the superior parietal. The SVM also identified a network of regions that had a decrease in BOLD responses during the 100 degrees condition in relation to the 0 degrees condition (posterior cingulate, frontal, and superior temporal gyrus). This network was also highly discriminating between the two conditions. In addition, we investigated changes in functional connectivity between the most discriminating areas identified by the spatio-temporal SVM. We observed an increase in functional connectivity between almost all areas activated during the 100 degrees condition (bilateral inferior and superior parietal lobe, bilateral premotor area, and SMA) but not between the areas that showed a decrease in BOLD response during the 100 degrees condition.
Resumo:
GPS technology has been embedded into portable, low-cost electronic devices nowadays to track the movements of mobile objects. This implication has greatly impacted the transportation field by creating a novel and rich source of traffic data on the road network. Although the promise offered by GPS devices to overcome problems like underreporting, respondent fatigue, inaccuracies and other human errors in data collection is significant; the technology is still relatively new that it raises many issues for potential users. These issues tend to revolve around the following areas: reliability, data processing and the related application. This thesis aims to study the GPS tracking form the methodological, technical and practical aspects. It first evaluates the reliability of GPS based traffic data based on data from an experiment containing three different traffic modes (car, bike and bus) traveling along the road network. It then outline the general procedure for processing GPS tracking data and discuss related issues that are uncovered by using real-world GPS tracking data of 316 cars. Thirdly, it investigates the influence of road network density in finding optimal location for enhancing travel efficiency and decreasing travel cost. The results show that the geographical positioning is reliable. Velocity is slightly underestimated, whereas altitude measurements are unreliable.Post processing techniques with auxiliary information is found necessary and important when solving the inaccuracy of GPS data. The densities of the road network influence the finding of optimal locations. The influence will stabilize at a certain level and do not deteriorate when the node density is higher.
Resumo:
To have good data quality with high complexity is often seen to be important. Intuition says that the higher accuracy and complexity the data have the better the analytic solutions becomes if it is possible to handle the increasing computing time. However, for most of the practical computational problems, high complexity data means that computational times become too long or that heuristics used to solve the problem have difficulties to reach good solutions. This is even further stressed when the size of the combinatorial problem increases. Consequently, we often need a simplified data to deal with complex combinatorial problems. In this study we stress the question of how the complexity and accuracy in a network affect the quality of the heuristic solutions for different sizes of the combinatorial problem. We evaluate this question by applying the commonly used p-median model, which is used to find optimal locations in a network of p supply points that serve n demand points. To evaluate this, we vary both the accuracy (the number of nodes) of the network and the size of the combinatorial problem (p). The investigation is conducted by the means of a case study in a region in Sweden with an asymmetrically distributed population (15,000 weighted demand points), Dalecarlia. To locate 5 to 50 supply points we use the national transport administrations official road network (NVDB). The road network consists of 1.5 million nodes. To find the optimal location we start with 500 candidate nodes in the network and increase the number of candidate nodes in steps up to 67,000 (which is aggregated from the 1.5 million nodes). To find the optimal solution we use a simulated annealing algorithm with adaptive tuning of the temperature. The results show that there is a limited improvement in the optimal solutions when the accuracy in the road network increase and the combinatorial problem (low p) is simple. When the combinatorial problem is complex (large p) the improvements of increasing the accuracy in the road network are much larger. The results also show that choice of the best accuracy of the network depends on the complexity of the combinatorial (varying p) problem.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O objetivo deste trabalho e apresentar uma investigação preliminar da precisão nos resultados do sistema de localização geográfica de transmissores desenvolvido utilizando o software da rede brasileira de coleta de dados. Um conjunto de medidas de desvio Doppler de uma única passagem do satélite, considerando uma Plataforma de Coleta de Dados (PCD) e uma rede de estações de recepção terrestrês, e denominado uma rede de recepção de dados. Assim, a rede brasileira de coleta de dados com o uso de múltiplas estações de recepção permitira o incremento na quantidade de dados coletados com consequente melhora na precisão e na confiabilidade das localizações fornecidas. Consequentemente uma maior quantidade de localizações válidas e mais precisas. Os resultados e análises foram obtidos sob duas condições: na primeira foi considerada uma condição prática com dados reais e dados ideais simulados, para comparar os resultados considerando a mesma passagem do satélite, transmissor e duas estações de recepção conhecidas; na segunda foram consideradas as condições ideais simuladas a partir de medidas de um transmissor fixo, três estações de recepção e dois satélites. Os resultados utilizando a rede de recepção de dados foram bastante satisfatórios. O estudo realizado mostrou a importãncia da instalação de novas estações de recepção terrenas distribuídas no territorio nacional, para um aumento na quantidade de medidas e consequentemente uma maior quantidade de localizações válidas e mais precisas.