990 resultados para fall prediction model of elderly


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To evaluate the impact of a programme of integrated social and medical care among frail elderly people living in the community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the recent high-resolution laboratory experiments on propagating shear rupture, the constitutive law that governs shear rupture processes is discussed in view of the physical principles and constraints, and a specific constitutive law is proposed for shear rupture. It is demonstrated that nonuniform distributions of the constitutive law parameters on the fault are necessary for creating the nucleation process, which consists of two phases: (i) a stable, quasistatic phase, and (ii) the subsequent accelerating phase. Physical models of the breakdown zone and the nucleation zone are presented for shear rupture in the brittle regime. The constitutive law for shear rupture explicitly includes a scaling parameter Dc that enables one to give a common interpretation to both small scale rupture in the laboratory and large scale rupture as earthquake source in the Earth. Both the breakdown zone size Xc and the nucleation zone size L are prescribed and scaled by Dc, which in turn is prescribed by a characteristic length lambda c representing geometrical irregularities of the fault. The models presented here make it possible to understand the earthquake generation process from nucleation to unstable, dynamic rupture propagation in terms of physics. Since the nucleation process itself is an immediate earthquake precursor, deep understanding of the nucleation process in terms of physics is crucial for the short-term (or immediate) earthquake prediction.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Federal Highway Administration, Environmental Design and Control Division, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Federal Highway Administration, Environmental Design and Control Division, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Our aim was to determine if insomnia severity, dysfunctional beliefs about sleep, and depression predicted sleep-related safety behaviors. Method: Standard sleep-related measures (such as the Insomnia Severity Index; the Dysfunctional Beliefs About Sleep scale; the Depression, Anxiety, and Stress Scale; and the Sleep-Related Behaviors Questionnaire) were administered. Additionally, 14 days of sleep diary (Pittsburg Sleep Diary) data and actual use of sleep-related behaviors were collected. Results: Regression analysis revealed that dysfunctional beliefs about sleep predicted sleep-related safety behaviors. Insomnia severity did not predict sleep-related safety behaviors. Depression accounted for the greatest amount of unique variance in the prediction of safety behaviors, followed by dysfunctional beliefs. Exploratory analysis revealed that participants with higher levels of depression used more sleep-related behaviors and reported greater dysfunctional beliefs about their sleep. Conclusion: The findings underlie the significant influence that dysfunctional beliefs have on individuals' behaviors. Moreover, the results suggest that depression may need to be considered as an explicit component of cognitive-behavioral models of insomnia. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: This study examined the validity of a model predicting weight restricting behaviour both cross-sectionally and longitudinally. Method: Participants comprised 1207 girls aged from 12 to 14 years. The girls completed self-report questionnaires at three time points over 1-year intervals. Results: The cross-sectional results suggested that weight preoccupation and body dissatisfaction directly predicted weight restricting behaviour. In addition, upset induced by teasing, depressive symptoms, BMI and negative attributional style demonstrated indirect effects on weight restricting behaviour through their effects on body dissatisfaction and/or weight preoccupation. Longitudinally however, only weight restricting behaviour and body dissatisfaction were significant in the prediction of weight restricting behaviour. Discussion: The implications of the results are discussed, together with suggestions for future research. Copyright (c) 2006 John Wiley & Sons, Ltd and Eating Disorders Association.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although event-related potentials (ERPs) are widely used to study sensory, perceptual and cognitive processes, it remains unknown whether they are phase-locked signals superimposed upon the ongoing electroencephalogram (EEG) or result from phase-alignment of the EEG. Previous attempts to discriminate between these hypotheses have been unsuccessful but here a new test is presented based on the prediction that ERPs generated by phase-alignment will be associated with event-related changes in frequency whereas evoked-ERPs will not. Using empirical mode decomposition (EMD), which allows measurement of narrow-band changes in the EEG without predefining frequency bands, evidence was found for transient frequency slowing in recognition memory ERPs but not in simulated data derived from the evoked model. Furthermore, the timing of phase-alignment was frequency dependent with the earliest alignment occurring at high frequencies. Based on these findings, the Firefly model was developed, which proposes that both evoked and induced power changes derive from frequency-dependent phase-alignment of the ongoing EEG. Simulated data derived from the Firefly model provided a close match with empirical data and the model was able to account for i) the shape and timing of ERPs at different scalp sites, ii) the event-related desynchronization in alpha and synchronization in theta, and iii) changes in the power density spectrum from the pre-stimulus baseline to the post-stimulus period. The Firefly Model, therefore, provides not only a unifying account of event-related changes in the EEG but also a possible mechanism for cross-frequency information processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conventional, geometrically lumped description of the physical processes inside a high shear granulator is not reliable for process design and scale-up. In this study, a compartmental Population Balance Model (PBM) with spatial dependence is developed and validated in two lab-scale high shear granulation processes using a 1.9L MiPro granulator and 4L DIOSNA granulator. The compartmental structure is built using a heuristic approach based on computational fluid dynamics (CFD) analysis, which includes the overall flow pattern, velocity and solids concentration. The constant volume Monte Carlo approach is implemented to solve the multi-compartment population balance equations. Different spatial dependent mechanisms are included in the compartmental PBM to describe granule growth. It is concluded that for both cases (low and high liquid content), the adjustment of parameters (e.g. layering, coalescence and breakage rate) can provide a quantitative prediction of the granulation process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

According to law number 12.715/2012, Brazilian government instituted guidelines for a program named Inovar-Auto. In this context, energy efficiency is a survival requirement for Brazilian automotive industry from September 2016. As proposed by law, energy efficiency is not going to be calculated by models only. It is going to be calculated by the whole universe of new vehicles registered. In this scenario, the composition of vehicles sold in market will be a key factor on profits of each automaker. Energy efficiency and its consequences should be taken into consideration in all of its aspects. In this scenario, emerges the following question: which is the efficiency curve of one automaker for long term, allowing them to adequate to rules, keep balancing on investment in technologies, increasing energy efficiency without affecting competitiveness of product lineup? Among several variables to be considered, one can highlight the analysis of manufacturing costs, customer value perception and market share, which characterizes this problem as a multi-criteria decision-making. To tackle the energy efficiency problem required by legislation, this paper proposes a framework of multi-criteria decision-making. The proposed framework combines Delphi group and Analytic Hierarchy Process to identify suitable alternatives for automakers to incorporate in main Brazilian vehicle segments. A forecast model based on artificial neural networks was used to estimate vehicle sales demand to validate expected results. This approach is demonstrated with a real case study using public vehicles sales data of Brazilian automakers and public energy efficiency data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new type of space debris was recently discovered by Schildknecht in near -geosynchronous orbit (GEO). These objects were later identified as exhibiting properties associated with High Area-to-Mass ratio (HAMR) objects. According to their brightness magnitudes (light curve), high rotation rates and composition properties (albedo, amount of specular and diffuse reflection, colour, etc), it is thought that these objects are multilayer insulation (MLI). Observations have shown that this debris type is very sensitive to environmental disturbances, particularly solar radiation pressure, due to the fact that their shapes are easily deformed leading to changes in the Area-to-Mass ratio (AMR) over time. This thesis proposes a simple effective flexible model of the thin, deformable membrane with two different methods. Firstly, this debris is modelled with Finite Element Analysis (FEA) by using Bernoulli-Euler theory called “Bernoulli model”. The Bernoulli model is constructed with beam elements consisting 2 nodes and each node has six degrees of freedom (DoF). The mass of membrane is distributed in beam elements. Secondly, the debris based on multibody dynamics theory call “Multibody model” is modelled as a series of lump masses, connected through flexible joints, representing the flexibility of the membrane itself. The mass of the membrane, albeit low, is taken into account with lump masses in the joints. The dynamic equations for the masses, including the constraints defined by the connecting rigid rod, are derived using fundamental Newtonian mechanics. The physical properties of both flexible models required by the models (membrane density, reflectivity, composition, etc.), are assumed to be those of multilayer insulation. Both flexible membrane models are then propagated together with classical orbital and attitude equations of motion near GEO region to predict the orbital evolution under the perturbations of solar radiation pressure, Earth’s gravity field, luni-solar gravitational fields and self-shadowing effect. These results are then compared to two rigid body models (cannonball and flat rigid plate). In this investigation, when comparing with a rigid model, the evolutions of orbital elements of the flexible models indicate the difference of inclination and secular eccentricity evolutions, rapid irregular attitude motion and unstable cross-section area due to a deformation over time. Then, the Monte Carlo simulations by varying initial attitude dynamics and deformed angle are investigated and compared with rigid models over 100 days. As the results of the simulations, the different initial conditions provide unique orbital motions, which is significantly different in term of orbital motions of both rigid models. Furthermore, this thesis presents a methodology to determine the material dynamic properties of thin membranes and validates the deformation of the multibody model with real MLI materials. Experiments are performed in a high vacuum chamber (10-4 mbar) replicating space environment. A thin membrane is hinged at one end but free at the other. The free motion experiment, the first experiment, is a free vibration test to determine the damping coefficient and natural frequency of the thin membrane. In this test, the membrane is allowed to fall freely in the chamber with the motion tracked and captured through high velocity video frames. A Kalman filter technique is implemented in the tracking algorithm to reduce noise and increase the tracking accuracy of the oscillating motion. The forced motion experiment, the last test, is performed to determine the deformation characteristics of the object. A high power spotlight (500-2000W) is used to illuminate the MLI and the displacements are measured by means of a high resolution laser sensor. Finite Element Analysis (FEA) and multibody dynamics of the experimental setups are used for the validation of the flexible model by comparing with the experimental results of displacements and natural frequencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two-stage hybrid model for data classification and rule extraction is proposed. The first stage uses a Fuzzy ARTMAP (FAM) classifier with Q-learning (known as QFAM) for incremental learning of data samples, while the second stage uses a Genetic Algorithm (GA) for rule extraction from QFAM. Given a new data sample, the resulting hybrid model, known as QFAM-GA, is able to provide prediction pertaining to the target class of the data sample as well as to give a fuzzy if-then rule to explain the prediction. To reduce the network complexity, a pruning scheme using Q-values is applied to reduce the number of prototypes generated by QFAM. A 'don't care' technique is employed to minimize the number of input features using the GA. A number of benchmark problems are used to evaluate the effectiveness of QFAM-GA in terms of test accuracy, noise tolerance, model complexity (number of rules and total rule length). The results are comparable, if not better, than many other models reported in the literature. The main significance of this research is a usable and useful intelligent model (i.e., QFAM-GA) for data classification in noisy conditions with the capability of yielding a set of explanatory rules with minimum antecedents. In addition, QFAM-GA is able to maximize accuracy and minimize model complexity simultaneously. The empirical outcome positively demonstrate the potential impact of QFAM-GA in the practical environment, i.e., providing an accurate prediction with a concise justification pertaining to the prediction to the domain users, therefore allowing domain users to adopt QFAM-GA as a useful decision support tool in assisting their decision-making processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although software analytics has experienced rapid growth as a research area, it has not yet reached its full potential for wide industrial adoption. Most of the existing work in software analytics still relies heavily on costly manual feature engineering processes, and they mainly address the traditional classification problems, as opposed to predicting future events. We present a vision for \emph{DeepSoft}, an \emph{end-to-end} generic framework for modeling software and its development process to predict future risks and recommend interventions. DeepSoft, partly inspired by human memory, is built upon the powerful deep learning-based Long Short Term Memory architecture that is capable of learning long-term temporal dependencies that occur in software evolution. Such deep learned patterns of software can be used to address a range of challenging problems such as code and task recommendation and prediction. DeepSoft provides a new approach for research into modeling of source code, risk prediction and mitigation, developer modeling, and automatically generating code patches from bug reports.