740 resultados para factory planning
Resumo:
Radiotherapy (RT) is one of the most important approaches in the treatment of cancer and its performance can be improved in three different ways: through the optimization of the dose distribution, by the use of different irradiation techniques or through the study of radiobiological initiatives. The first is purely physical because is related to the physical dose distributiuon. The others are purely radiobiological because they increase the differential effect between the tumour and the health tissues. The Treatment Planning Systems (TPS) are used in RT to create dose distributions with the purpose to maximize the tumoral control and minimize the complications in the healthy tissues. The inverse planning uses dose optimization techniques that satisfy the criteria specified by the user, regarding the target and the organs at risk (OAR’s). The dose optimization is possible through the analysis of dose-volume histograms (DVH) and with the use of computed tomography, magnetic resonance and other digital image techniques.
Resumo:
Radiotherapy is one of the therapeutics selected for localized prostate cancer, in cases where the tumour is confined to the prostate, penetrates the prostatic capsule or has reached the seminal vesicles (T1 to T3 stages). The radiation therapy can be administered through various modalities, being historically used the 3D conformal radiotherapy (3DCRT). Other modality of radiation administration is the intensity modulated radiotherapy (IMRT), that allows an increase of the total dose through modulation of the treatment beams, enabling a reduction in toxicity. One way to administer IMRT is through helical tomotherapy (TH). With this study we intent to analyze the advantages of helical tomotherapy when compared with 3DCRT, by evaluating the doses in the organs at risk (OAR) and planning target volumes (PTV).
Resumo:
This paper presents a complete, quadratic programming formulation of the standard thermal unit commitment problem in power generation planning, together with a novel iterative optimisation algorithm for its solution. The algorithm, based on a mixed-integer formulation of the problem, considers piecewise linear approximations of the quadratic fuel cost function that are dynamically updated in an iterative way, converging to the optimum; this avoids the requirement of resorting to quadratic programming, making the solution process much quicker. From extensive computational tests on a broad set of benchmark instances of this problem, the algorithm was found to be flexible and capable of easily incorporating different problem constraints. Indeed, it is able to tackle ramp constraints, which although very important in practice were rarely considered in previous publications. Most importantly, optimal solutions were obtained for several well-known benchmark instances, including instances of practical relevance, that are not yet known to have been solved to optimality. Computational experiments and their results showed that the method proposed is both simple and extremely effective.
Resumo:
No âmbito da unidade curricular Dissertação/Projeto/Estágio do 2ºano do Mestrado em Engenharia mecânica – Ramo Gestão Industrial do Instituto Superior de Engenharia do Porto, o presente trabalho de dissertação foi enquadrado num projeto industrial de melhoria com Instituto Kaizen, empresa de consultoria operacional. O projeto foi desenvolvido numa empresa de produção de componentes em ferro nodular destinados à indústria automóvel do mercado europeu, a Sakthi Portugal,SA. A realização deste projeto teve como objetivo a implementação do sistema de planeamento em Pull (produção puxada) na logística interna da Sakthi Portugal,SA recorrendo à metodologia Kaizen. Esta metodologia consiste na aplicação de ferramentas de TFM - Total Flow Management, integradas no Kaizen Management System. Neste projeto recorreu-se especialmente a um dos pilares que o constituem, o pilar do “Fluxo da Logística Interna”. Neste pilar encontram-se as várias metodologias utilizadas na otimização do fluxo de material e informação na logística interna. Estas metodologias foram aplicadas, com o objetivo do sistema produtivo operar de acordo com a necessidade do cliente, obtendo deste modo a minimização dos custo e o aumento da produtividade e qualidade. Em resultado da aplicação da metodologia seguida, foi possível atingir-se os objetivos definidos inicialmente e em alguns casos foi possível superar esses objetivos. Em função da abordagem integrada que foi seguida, conseguiu-se uma diminuição do “lead time” do processo de fabrico, redução dos produtos em curso de fabrico, libertação de espaço e redução de inventários. Estas melhorias resultaram numa movimentação interna na fábrica mais facilitada e num aumento global da produtividade. Como consequência positiva dos efeitos deste trabalho, pode-se apontar o facto de que a Sakthi Portugal SA aumentou a sua competitividade por tornar-se numa empresa mais dinâmica, mais adaptada ao mercado e com níveis de satisfação do cliente muito superiores.
Resumo:
In the past few years the so-called gadgets like cellular phones, personal data assistants and digital cameras are more widespread even with less technological aware users. However, for several reasons, the factory-floor itself seems to be hermetic to this changes ... After the fieldbus revolution, the factory-floor has seen an increased use of more and more powerful programmable logic controllers and user interfaces but the way they are used remains almost the same. We believe that new user-computer interaction techniques including multimedia and augmented rcaliry combined with now affordable technologies like wearable computers and wireless networks can change the way the factory personal works together with the roachines and the information system on the factory-floor. This new age is already starting with innovative uses of communication networks on the factory-floor either using "standard" networks or enhancing industrial networks with multimedia and wireless capabilities.
Resumo:
In this paper we describe a real-time industrial communication network able to support both controlrelated and multimedia traffic. The industrial communication network is based on the PROFIBUS standard, with multimedia capabilities being provided by an adequate integration of TCP/IP protocols into the PROFIBUS stack. From the operational point of view the integration of TCP/IP into PROFIBUS is by itself a challenge, since the master-slave nature of the PROFIBUS MAC makes complex the implementation of the symmetry inherent to IP communications. From the timeliness point of view the challenge is two folded. On one hand the multimedia traffic should not interfere with the timing requirements of the "native" control-related PROFIBUS traffic (typically hard real-time). On the other hand multimedia traffic requires certain levels of quality-of-service to be attained. In this paper we provide a methodology that enables fulfilling the timing requirements for both types of traffic in these real-time industrial LAN. Moreover, we describe suitable algorithms for the scheduling support of concurrent multimedia streams.
Resumo:
In the past few years, a significant amount of work has been devoted to the timing analysis of Ethernet-based technologies. However, none of these address the problem of timeliness evaluation at a holistic level. This paper describes a research framework embracing this objective. It is advocated that, simulation models can be a powerful tool, not only for timeliness evaluation, but also to enable the introduction of less pessimistic assumptions in an analytical response time approach, which, most often, are afflicted with simplifications leading to pessimistic assumptions and, therefore, delusive results. To this end, we address a few inter-linked research topics with the purpose of setting a framework for developing tools suitable to extract temporal properties of commercial-off-the-shelf (COTS) factory-floor communication systems.
Resumo:
Field communication systems (fieldbuses) are widely used as the communication support for distributed computer-controlled systems (DCCS) within all sort of process control and manufacturing applications. There are several advantages in the use of fieldbuses as a replacement for the traditional point-to-point links between sensors/actuators and computer-based control systems, within which the most relevant is the decentralisation and distribution of the processing power over the field. A widely used fieldbus is the WorldFIP, which is normalised as European standard EN 50170. Using WorldFIP to support DCCS, an important issue is “how to guarantee the timing requirements of the real-time traffic?” WorldFIP has very interesting mechanisms to schedule data transfers, since it explicitly distinguishes periodic and aperiodic traffic. In this paper, we describe how WorldFIP handles these two types of traffic, and more importantly, we provide a comprehensive analysis on how to guarantee the timing requirements of the real-time traffic.
Resumo:
Kinematic redundancy occurs when a manipulator possesses more degrees of freedom than those required to execute a given task. Several kinematic techniques for redundant manipulators control the gripper through the pseudo-inverse of the Jacobian, but lead to a kind of chaotic inner motion with unpredictable arm configurations. Such algorithms are not easy to adapt to optimization schemes and, moreover, often there are multiple optimization objectives that can conflict between them. Unlike single optimization, where one attempts to find the best solution, in multi-objective optimization there is no single solution that is optimum with respect to all indices. Therefore, trajectory planning of redundant robots remains an important area of research and more efficient optimization algorithms are needed. This paper presents a new technique to solve the inverse kinematics of redundant manipulators, using a multi-objective genetic algorithm. This scheme combines the closed-loop pseudo-inverse method with a multi-objective genetic algorithm to control the joint positions. Simulations for manipulators with three or four rotational joints, considering the optimization of two objectives in a workspace without and with obstacles are developed. The results reveal that it is possible to choose several solutions from the Pareto optimal front according to the importance of each individual objective.
Resumo:
The trajectory planning of redundant robots through the pseudoinverse control leads to undesirable drift in the joint space. This paper presents a new technique to solve the inverse kinematics problem of redundant manipulators, which uses a fractional differential of order α to control the joint positions. Two performance measures are defined to examine the strength and weakness of the proposed method. The positional error index measures the precision of the manipulator's end-effector at the target position. The repeatability performance index is adopted to evaluate if the joint positions are repetitive when the manipulator execute repetitive trajectories in the operational workspace. Redundant and hyper-redundant planar manipulators reveal that it is possible to choose in a large range of possible values of α in order to get repetitive trajectories in the joint space.
Resumo:
In the last twenty years genetic algorithms (GAs) were applied in a plethora of fields such as: control, system identification, robotics, planning and scheduling, image processing, and pattern and speech recognition (Bäck et al., 1997). In robotics the problems of trajectory planning, collision avoidance and manipulator structure design considering a single criteria has been solved using several techniques (Alander, 2003). Most engineering applications require the optimization of several criteria simultaneously. Often the problems are complex, include discrete and continuous variables and there is no prior knowledge about the search space. These kind of problems are very more complex, since they consider multiple design criteria simultaneously within the optimization procedure. This is known as a multi-criteria (or multiobjective) optimization, that has been addressed successfully through GAs (Deb, 2001). The overall aim of multi-criteria evolutionary algorithms is to achieve a set of non-dominated optimal solutions known as Pareto front. At the end of the optimization procedure, instead of a single optimal (or near optimal) solution, the decision maker can select a solution from the Pareto front. Some of the key issues in multi-criteria GAs are: i) the number of objectives, ii) to obtain a Pareto front as wide as possible and iii) to achieve a Pareto front uniformly spread. Indeed, multi-objective techniques using GAs have been increasing in relevance as a research area. In 1989, Goldberg suggested the use of a GA to solve multi-objective problems and since then other researchers have been developing new methods, such as the multi-objective genetic algorithm (MOGA) (Fonseca & Fleming, 1995), the non-dominated sorted genetic algorithm (NSGA) (Deb, 2001), and the niched Pareto genetic algorithm (NPGA) (Horn et al., 1994), among several other variants (Coello, 1998). In this work the trajectory planning problem considers: i) robots with 2 and 3 degrees of freedom (dof ), ii) the inclusion of obstacles in the workspace and iii) up to five criteria that are used to qualify the evolving trajectory, namely the: joint traveling distance, joint velocity, end effector / Cartesian distance, end effector / Cartesian velocity and energy involved. These criteria are used to minimize the joint and end effector traveled distance, trajectory ripple and energy required by the manipulator to reach at destination point. Bearing this ideas in mind, the paper addresses the planning of robot trajectories, meaning the development of an algorithm to find a continuous motion that takes the manipulator from a given starting configuration up to a desired end position without colliding with any obstacle in the workspace. The chapter is organized as follows. Section 2 describes the trajectory planning and several approaches proposed in the literature. Section 3 formulates the problem, namely the representation adopted to solve the trajectory planning and the objectives considered in the optimization. Section 4 studies the algorithm convergence. Section 5 studies a 2R manipulator (i.e., a robot with two rotational joints/links) when the optimization trajectory considers two and five objectives. Sections 6 and 7 show the results for the 3R redundant manipulator with five goals and for other complementary experiments are described, respectively. Finally, section 8 draws the main conclusions.
Resumo:
The trajectory planning of redundant robots is an important area of research and efficient optimization algorithms are needed. The pseudoinverse control is not repeatable, causing drift in joint space which is undesirable for physical control. This paper presents a new technique that combines the closed-loop pseudoinverse method with genetic algorithms, leading to an optimization criterion for repeatable control of redundant manipulators, and avoiding the joint angle drift problem. Computer simulations performed based on redundant and hyper-redundant planar manipulators show that, when the end-effector traces a closed path in the workspace, the robot returns to its initial configuration. The solution is repeatable for a workspace with and without obstacles in the sense that, after executing several cycles, the initial and final states of the manipulator are very close.
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
The trajectory planning of redundant robots is an important area of research and efficient optimization algorithms are needed. This paper presents a new technique that combines the closed-loop pseudoinverse method with genetic algorithms. The results are compared with a genetic algorithm that adopts the direct kinematics. In both cases the trajectory planning is formulated as an optimization problem with constraints.