868 resultados para facility location
Resumo:
Cloud computing has emerged as a major ICT trend and has been acknowledged as a key theme of industry by prominent ICT organisations. However, one of the major challenges that face the cloud computing concept and its global acceptance is how to secure and protect the data that is the property of the user. The geographic location of cloud data storage centres is an important issue for many organisations and individuals due to the regulations and laws that require data and operations to reside in specific geographic locations. Thus, data owners may need to ensure that their cloud providers do not compromise the SLA contract and move their data into another geographic location. This paper introduces an architecture for a new approach for geographic location assurance, which combines the proof of storage protocol (POS) and the distance-bounding protocol. This allows the client to check where their stored data is located, without relying on the word of the cloud provider. This architecture aims to achieve better security and more flexible geographic assurance within the environment of cloud computing.
Resumo:
Efficient management of domestic wastewater is a primary requirement for human well being. Failure to adequately address issues of wastewater collection, treatment and disposal can lead to adverse public health and environmental impacts. The increasing spread of urbanisation has led to the conversion of previously rural land into urban developments and the more intensive development of semi urban areas. However the provision of reticulated sewerage facilities has not kept pace with this expansion in urbanisation. This has resulted in a growing dependency on onsite sewage treatment. Though considered only as a temporary measure in the past, these systems are now considered as the most cost effective option and have become a permanent feature in some urban areas. This report is the first of a series of reports to be produced and is the outcome of a research project initiated by the Brisbane City Council. The primary objective of the research undertaken was to relate the treatment performance of onsite sewage treatment systems with soil conditions at site, with the emphasis being on septic tanks. This report consists of a ‘state of the art’ review of research undertaken in the arena of onsite sewage treatment. The evaluation of research brings together significant work undertaken locally and overseas. It focuses mainly on septic tanks in keeping with the primary objectives of the project. This report has acted as the springboard for the later field investigations and analysis undertaken as part of the project. Septic tanks still continue to be used widely due to their simplicity and low cost. Generally the treatment performance of septic tanks can be highly variable due to numerous factors, but a properly designed, operated and maintained septic tank can produce effluent of satisfactory quality. The reduction of hydraulic surges from washing machines and dishwashers, regular removal of accumulated septage and the elimination of harmful chemicals are some of the practices that can improve system performance considerably. The relative advantages of multi chamber over single chamber septic tanks is an issue that needs to be resolved in view of the conflicting research outcomes. In recent years, aerobic wastewater treatment systems (AWTS) have been gaining in popularity. This can be mainly attributed to the desire to avoid subsurface effluent disposal, which is the main cause of septic tank failure. The use of aerobic processes for treatment of wastewater and the disinfection of effluent prior to disposal is capable of producing effluent of a quality suitable for surface disposal. However the field performance of these has been disappointing. A significant number of these systems do not perform to stipulated standards and quality can be highly variable. This is primarily due to houseowner neglect or ignorance of correct operational and maintenance procedures. The other problems include greater susceptibility to shock loadings and sludge bulking. As identified in literature a number of design features can also contribute to this wide variation in quality. The other treatment processes in common use are the various types of filter systems. These include intermittent and recirculating sand filters. These systems too have their inherent advantages and disadvantages. Furthermore as in the case of aerobic systems, their performance is very much dependent on individual houseowner operation and maintenance practices. In recent years the use of biofilters has attracted research interest and particularly the use of peat. High removal rates of various wastewater pollutants have been reported in research literature. Despite these satisfactory results, leachate from peat has been reported in various studies. This is an issue that needs further investigations and as such biofilters can still be considered to be in the experimental stage. The use of other filter media such as absorbent plastic and bark has also been reported in literature. The safe and hygienic disposal of treated effluent is a matter of concern in the case of onsite sewage treatment. Subsurface disposal is the most common and the only option in the case of septic tank treatment. Soil is an excellent treatment medium if suitable conditions are present. The processes of sorption, filtration and oxidation can remove the various wastewater pollutants. The subsurface characteristics of the disposal area are among the most important parameters governing process performance. Therefore it is important that the soil and topographic conditions are taken into consideration in the design of the soil absorption system. Seepage trenches and beds are the common systems in use. Seepage pits or chambers can be used where subsurface conditions warrant, whilst above grade mounds have been recommended for a variety of difficult site conditions. All these systems have their inherent advantages and disadvantages and the preferable soil absorption system should be selected based on site characteristics. The use of gravel as in-fill for beds and trenches is open to question. It does not contribute to effluent treatment and has been shown to reduce the effective infiltrative surface area. This is due to physical obstruction and the migration of fines entrained in the gravel, into the soil matrix. The surface application of effluent is coming into increasing use with the advent of aerobic treatment systems. This has the advantage that treatment is undertaken on the upper soil horizons, which is chemically and biologically the most effective in effluent renovation. Numerous research studies have demonstrated the feasibility of this practice. However the overriding criteria is the quality of the effluent. It has to be of exceptionally good quality in order to ensure that there are no resulting public health impacts due to aerosol drift. This essentially is the main issue of concern, due to the unreliability of the effluent quality from aerobic systems. Secondly, it has also been found that most householders do not take adequate care in the operation of spray irrigation systems or in the maintenance of the irrigation area. Under these circumstances surface disposal of effluent should be approached with caution and would require appropriate householder education and stringent compliance requirements. However despite all this, the efficiency with which the process is undertaken will ultimately rest with the individual householder and this is where most concern rests. Greywater too should require similar considerations. Surface irrigation of greywater is currently being permitted in a number of local authority jurisdictions in Queensland. Considering the fact that greywater constitutes the largest fraction of the total wastewater generated in a household, it could be considered to be a potential resource. Unfortunately in most circumstances the only pretreatment that is required to be undertaken prior to reuse is the removal of oil and grease. This is an issue of concern as greywater can considered to be a weak to medium sewage as it contains primary pollutants such as BOD material and nutrients and may also include microbial contamination. Therefore its use for surface irrigation can pose a potential health risk. This is further compounded by the fact that most householders are unaware of the potential adverse impacts of indiscriminate greywater reuse. As in the case of blackwater effluent reuse, there have been suggestions that greywater should also be subjected to stringent guidelines. Under these circumstances the surface application of any wastewater requires careful consideration. The other option available for the disposal effluent is the use of evaporation systems. The use of evapotranspiration systems has been covered in this report. Research has shown that these systems are susceptible to a number of factors and in particular to climatic conditions. As such their applicability is location specific. Also the design of systems based solely on evapotranspiration is questionable. In order to ensure more reliability, the systems should be designed to include soil absorption. The successful use of these systems for intermittent usage has been noted in literature. Taking into consideration the issues discussed above, subsurface disposal of effluent is the safest under most conditions. This is provided the facility has been designed to accommodate site conditions. The main problem associated with subsurface disposal is the formation of a clogging mat on the infiltrative surfaces. Due to the formation of the clogging mat, the capacity of the soil to handle effluent is no longer governed by the soil’s hydraulic conductivity as measured by the percolation test, but rather by the infiltration rate through the clogged zone. The characteristics of the clogging mat have been shown to be influenced by various soil and effluent characteristics. Secondly, the mechanisms of clogging mat formation have been found to be influenced by various physical, chemical and biological processes. Biological clogging is the most common process taking place and occurs due to bacterial growth or its by-products reducing the soil pore diameters. Biological clogging is generally associated with anaerobic conditions. The formation of the clogging mat provides significant benefits. It acts as an efficient filter for the removal of microorganisms. Also as the clogging mat increases the hydraulic impedance to flow, unsaturated flow conditions will occur below the mat. This permits greater contact between effluent and soil particles thereby enhancing the purification process. This is particularly important in the case of highly permeable soils. However the adverse impacts of the clogging mat formation cannot be ignored as they can lead to significant reduction in the infiltration rate. This in fact is the most common cause of soil absorption systems failure. As the formation of the clogging mat is inevitable, it is important to ensure that it does not impede effluent infiltration beyond tolerable limits. Various strategies have been investigated to either control clogging mat formation or to remediate its severity. Intermittent dosing of effluent is one such strategy that has attracted considerable attention. Research conclusions with regard to short duration time intervals are contradictory. It has been claimed that the intermittent rest periods would result in the aerobic decomposition of the clogging mat leading to a subsequent increase in the infiltration rate. Contrary to this, it has also been claimed that short duration rest periods are insufficient to completely decompose the clogging mat, and the intermediate by-products that form as a result of aerobic processes would in fact lead to even more severe clogging. It has been further recommended that the rest periods should be much longer and should be in the range of about six months. This entails the provision of a second and alternating seepage bed. The other concepts that have been investigated are the design of the bed to meet the equilibrium infiltration rate that would eventuate after clogging mat formation; improved geometry such as the use of seepage trenches instead of beds; serial instead of parallel effluent distribution and low pressure dosing of effluent. The use of physical measures such as oxidation with hydrogen peroxide and replacement of the infiltration surface have been shown to be only of short-term benefit. Another issue of importance is the degree of pretreatment that should be provided to the effluent prior to subsurface application and the influence exerted by pollutant loadings on the clogging mat formation. Laboratory studies have shown that the total mass loadings of BOD and suspended solids are important factors in the formation of the clogging mat. It has also been found that the nature of the suspended solids is also an important factor. The finer particles from extended aeration systems when compared to those from septic tanks will penetrate deeper into the soil and hence will ultimately cause a more dense clogging mat. However the importance of improved pretreatment in clogging mat formation may need to be qualified in view of other research studies. It has also shown that effluent quality may be a factor in the case of highly permeable soils but this may not be the case with fine structured soils. The ultimate test of onsite sewage treatment system efficiency rests with the final disposal of effluent. The implication of system failure as evidenced from the surface ponding of effluent or the seepage of contaminants into the groundwater can be very serious as it can lead to environmental and public health impacts. Significant microbial contamination of surface and groundwater has been attributed to septic tank effluent. There are a number of documented instances of septic tank related waterborne disease outbreaks affecting large numbers of people. In a recent incident, the local authority was found liable for an outbreak of viral hepatitis A and not the individual septic tank owners as no action had been taken to remedy septic tank failure. This illustrates the responsibility placed on local authorities in terms of ensuring the proper operation of onsite sewage treatment systems. Even a properly functioning soil absorption system is only capable of removing phosphorus and microorganisms. The nitrogen remaining after plant uptake will not be retained in the soil column, but will instead gradually seep into the groundwater as nitrate. Conditions for nitrogen removal by denitrification are not generally present in a soil absorption bed. Dilution by groundwater is the only treatment available for reducing the nitrogen concentration to specified levels. Therefore based on subsurface conditions, this essentially entails a maximum allowable concentration of septic tanks in a given area. Unfortunately nitrogen is not the only wastewater pollutant of concern. Relatively long survival times and travel distances have been noted for microorganisms originating from soil absorption systems. This is likely to happen if saturated conditions persist under the soil absorption bed or due to surface runoff of effluent as a result of system failure. Soils have a finite capacity for the removal of phosphorus. Once this capacity is exceeded, phosphorus too will seep into the groundwater. The relatively high mobility of phosphorus in sandy soils have been noted in the literature. These issues have serious implications in the design and siting of soil absorption systems. It is not only important to ensure that the system design is based on subsurface conditions but also the density of these systems in given areas is a critical issue. This essentially involves the adoption of a land capability approach to determine the limitations of an individual site for onsite sewage disposal. The most limiting factor at a particular site would determine the overall capability classification for that site which would also dictate the type of effluent disposal method to be adopted.
Resumo:
Motor vehicle emissions have been identified as one of the major contributors of fine and ultrafine particles (UFP) in urban areas. Schools located near major roads could potentially be exposed to high levels of UPFs and school classroom is an important microenvironment where significant exposure to UFPs is likely to occur. Most of the research conducted to date has investigated the relationship between indoor and outdoor particle number concentration (PNC) in schools based on one outdoor location, which may introduce a level of error when calculating the variation of total UPFs, and can result in the underestimation or overestimation of indoor to outdoor (I/O) ratio values.
Thinking about Australia and its location in the modern world in the Australian Curriculum : history
Resumo:
The first national history curriculum is being implemented in Australia from 2013. As with the curriculums of other nations, this curriculum has evolved in response to a range of factors and its merits continue to be debated. In critiquing the sort of history education approach encapsulated in the new curriculum, I discuss some of the contextual factors and debates that have shaped the Australian Curriculum: History v0.3 (ACARA, 2012). In doing so, I also explore some of the recent international literature on how students think and learn about history in the classroom. In the third and final part of the paper, I raise some logistical issues and also question how students might engage with the notion of Australia as a nation in the modern world rapidly reshaped by the transformations occurring in Asia and share some concerns about the curriculum’s ‘world history approach’ for Year 10.
Resumo:
Scientific and programmatic progress toward the development of a cosmic dust collection facility (CDCF) for the proposed space station is documented. Topics addressed include: trajectory sensor concepts; trajectory accuracy and orbital evolution; CDCF pointing direction; development of capture devices; analytical techniques; programmatic progress; flight opportunities; and facility development.
ACE research vignette 023 : Does firm location make a difference to the export performance of SME's?
Resumo:
This series of research vignettes is aimed at sharing current and interesting research findings from our team of international Entrepreneurship researchers. This vignette, written by Mr. Darren Kavenagh and Professor Per Davidsson, deals with export capacity of Australian SMEs.
Resumo:
A technologically innovative study was undertaken across two suburbs in Brisbane, Australia, to assess socioeconomic differences in women's use of the local environment for work, recreation, and physical activity. Mothers from high and low socioeconomic suburbs were instructed to continue with usual daily routines, and to use mobile phone applications (Facebook Places, Twitter, and Foursquare) on their mobile phones to ‘check-in’ at each location and destination they reached during a one-week period. These smartphone applications are able to track travel logistics via built-in geographical information systems (GIS), which record participants’ points of latitude and longitude at each destination they reach. Location data were downloaded to Google Earth and excel for analysis. Women provided additional qualitative data via text regarding the reasons and social contexts of their travel. We analysed 2183 ‘check-ins’ for 54 women in this pilot study to gain quantitative, qualitative, and spatial data on human-environment interactions. Data was gathered on distances travelled, mode of transport, reason for travel, social context of travel, and categorised in terms of physical activity type – walking, running, sports, gym, cycling, or playing in the park. We found that the women in both suburbs had similar daily routines with the exception of physical activity. We identified 15% of ‘check-ins’ in the lower socioeconomic group as qualifying for the physical activity category, compared with 23% in the higher socioeconomic group. This was explained by more daily walking for transport (1.7kms to 0.2kms) and less car travel each week (28.km to 48.4kms) in the higher socioeconomic suburb. We ascertained insights regarding the socio-cultural influences on these differences via additional qualitative data. We discuss the benefits and limitations of using new technologies and Google Earth with implications for informing future physical and social aspects of urban design, and health promotion in socioeconomically diverse cities.
Resumo:
The VESUVIO project aims to provide unique prototype instrumentation at the ISIS-pulsed neutron source and to establish a routine experimental and theoretical program in neutron scattering spectroscopy at eV energies. This instrumentation will be specifically designed for high momentum, , and energy transfer inelastic neutron scattering studies of microscopic dynamical processes in materials and will represent a unique facility for EU researchers. It will allow to derive single-particle kinetic energies and single-particle momentum distributions, n(p), providing additional and/or complementary information to other neutron inelastic spectroscopic techniques.
An evaluation of the Australian Capital Territory Sexual Assault Reform Program (SARP): Final Report
Resumo:
In 2005 the Australian Capital Territory (ACT) Office of the Director of Public Prosecutions (DPP) and the Australian Federal Police (AFP) produced a report, Responding to sexual assault: The challenge of change (DPP & AFP 2005), which made 105 recommendations for reforming the way sexual offence cases are handled by the ACT’s criminal justice system. The Sexual Assault Reform Program (SARP) is one key initiative developed in response to these recommendations. Managed by the ACT Justice and Community Safety Directorate (JACS), SARP’s main objective is to improve aspects of the criminal justice system relating to: processes and support for victims of sexual offences as they progress through the system; attrition in sexual offence matters in the criminal justice system; and coordination and collaboration among the agencies involved. In November 2007 the ACT Attorney-General announced $4 million of funding for several SARP reforms. This funding provided for additional victim support staff; a dedicated additional police officer, prosecutor and legal policy officer; and an upgrade of equipment for the Supreme Court and Magistrates Court, including improvements in technology to assist witnesses in giving evidence, and the establishment of an off-site facility to allow witnesses to give evidence from a location outside of the court. In addition, the reform agenda included a number of legislative amendments that changed how evidence can be given by victims of sexual and family violence offences, children and other vulnerable witnesses. The primary objectives of these legislative changes are to provide an unintimidating, safe environment for vulnerable witnesses (including sexual offence complainants) to give evidence and to obtain prompt statements from witnesses to improve the quality of evidence captured (DPP 2009: 13). The current evaluation The funding for SARP reforms also provided for a preliminary evaluation of the reforms; this report outlines findings from the evaluation. The evaluation sought to address whether the program has met its key objectives: better support for victims, lower attrition rates and improved coordination and collaboration among agencies involved in administering SARP. The evaluation was conducted in two stages and involved a mixed-methods approach. During stage 1 key indicators for the evaluation were developed with stakeholders. During stage 2 quantitative data were collected by stakeholders and provided to the AIC for analysis. Qualitative interviews were also conducted with service delivery providers, and with a small number (n=5) of victim/survivors of sexual offences whose cases had recently been resolved in the ACT criminal justice system. The current evaluation is preliminary in nature. As the SARP reforms will take time to become entrenched within the ACT’s criminal justice system, some of the impacts of the reforms may not yet be evident. Nonetheless, this evaluation provides an insight into how well the SARP reforms have been implemented to date, as well as key areas that could be addressed in the future. Key findings from the preliminary evaluation are outlined briefly below.
Resumo:
The host location behaviour of foraging caterpillars has received little attention, despite the wealth of theoretical and empirical studies that have been directed at this behavioural trait in adult Lepidoptera. Here, we study caterpillars of the moth Heliothis punctifera Walker (Lepidoptera: Noctuidae), which inhabits the arid inland desert areas of Australia. Caterpillars of this species consume many flowerheads before completing development and can be observed moving across the sand in search of new hosts. Consequently, if host location behaviour favours attraction to certain plant species, it might be expected to influence the distribution and abundance of caterpillars in the field. We present field data showing that H. punctifera caterpillars are unevenly distributed throughout mixed patches of two of its host species, with a higher abundance on Senecio gregorii F. Muell., the annual yellow top, compared to Myriocephalus stuartii (F. Muell. & Sond.) Benth., the poached egg daisy (both Asteraceae). Using laboratory studies, we test whether this distribution may, in part, be due to host location behaviour of caterpillars. Our results show that caterpillars exhibit a preference for locating S. gregorii in their pre- and post-contact foraging behaviour. In addition, our results provide evidence that feeding history plays a role in host location behaviour in this insect. We propose that key features of the desert environment and the ecology of H. punctifera would favour adaptations to host location behaviour by immatures.
Resumo:
In this work, ab initio spin-polarised Density Functional Theory (DFT) calculations are performed to study the interaction of a Ti atom with a NaAlH4(001) surface. We confirm that an interstitially located Ti atom in the NaAlH4 subsurface is the most energetically favoured configuration as recently reported (Chem. Comm. (17) 2006, 1822). On the NaAlH4(001) surface, the Ti atom is most stable when adsorbed between two sodium atoms with an AlH4 unit beneath. A Ti atom on top of an Al atom is also found to be an important structure at low temperatures. The diffusion of Ti from the Al-top site to the Na-bridging site has a low activation barrier of 0.20 eV and may be activated at the experimental temperatures (∼323 K). The diffusion of a Ti atom into the energetically favoured subsurface interstitial site occurs via the Na-bridging surface site and is essentially barrierless.
Resumo:
A Neutral cluster and Air Ion Spectrometer (NAIS) was used to monitor the concentration of airborne ions on 258 full days between Nov 2011 and Dec 2012 in Brisbane, Australia. The air was sampled from outside a window on the sixth floor of a building close to the city centre, approximately 100 m away from a busy freeway. The NAIS detects all ions and charged particles smaller than 42 nm. It was operated in a 4 min measurement cycle, with ion data recorded at 10 s intervals over 2 min during each cycle. The data were analysed to derive the diurnal variation of small, large and total ion concentrations in the environment. We adapt the definition of Horrak et al (2000) and classify small ions as molecular clusters smaller than 1.6 nm and large ions as charged particles larger than this size...