992 resultados para expansion ratio
Resumo:
The ability of a piezoelectric transducer in energy conversion is rapidly expanding in several applications. Some of the industrial applications for which a high power ultrasound transducer can be used are surface cleaning, water treatment, plastic welding and food sterilization. Also, a high power ultrasound transducer plays a great role in biomedical applications such as diagnostic and therapeutic applications. An ultrasound transducer is usually applied to convert electrical energy to mechanical energy and vice versa. In some high power ultrasound system, ultrasound transducers are applied as a transmitter, as a receiver or both. As a transmitter, it converts electrical energy to mechanical energy while a receiver converts mechanical energy to electrical energy as a sensor for control system. Once a piezoelectric transducer is excited by electrical signal, piezoelectric material starts to vibrate and generates ultrasound waves. A portion of the ultrasound waves which passes through the medium will be sensed by the receiver and converted to electrical energy. To drive an ultrasound transducer, an excitation signal should be properly designed otherwise undesired signal (low quality) can deteriorate the performance of the transducer (energy conversion) and increase power consumption in the system. For instance, some portion of generated power may be delivered in unwanted frequency which is not acceptable for some applications especially for biomedical applications. To achieve better performance of the transducer, along with the quality of the excitation signal, the characteristics of the high power ultrasound transducer should be taken into consideration as well. In this regard, several simulation and experimental tests are carried out in this research to model high power ultrasound transducers and systems. During these experiments, high power ultrasound transducers are excited by several excitation signals with different amplitudes and frequencies, using a network analyser, a signal generator, a high power amplifier and a multilevel converter. Also, to analyse the behaviour of the ultrasound system, the voltage ratio of the system is measured in different tests. The voltage across transmitter is measured as an input voltage then divided by the output voltage which is measured across receiver. The results of the transducer characteristics and the ultrasound system behaviour are discussed in chapter 4 and 5 of this thesis. Each piezoelectric transducer has several resonance frequencies in which its impedance has lower magnitude as compared to non-resonance frequencies. Among these resonance frequencies, just at one of those frequencies, the magnitude of the impedance is minimum. This resonance frequency is known as the main resonance frequency of the transducer. To attain higher efficiency and deliver more power to the ultrasound system, the transducer is usually excited at the main resonance frequency. Therefore, it is important to find out this frequency and other resonance frequencies. Hereof, a frequency detection method is proposed in this research which is discussed in chapter 2. An extended electrical model of the ultrasound transducer with multiple resonance frequencies consists of several RLC legs in parallel with a capacitor. Each RLC leg represents one of the resonance frequencies of the ultrasound transducer. At resonance frequency the inductor reactance and capacitor reactance cancel out each other and the resistor of this leg represents power conversion of the system at that frequency. This concept is shown in simulation and test results presented in chapter 4. To excite a high power ultrasound transducer, a high power signal is required. Multilevel converters are usually applied to generate a high power signal but the drawback of this signal is low quality in comparison with a sinusoidal signal. In some applications like ultrasound, it is extensively important to generate a high quality signal. Several control and modulation techniques are introduced in different papers to control the output voltage of the multilevel converters. One of those techniques is harmonic elimination technique. In this technique, switching angles are chosen in such way to reduce harmonic contents in the output side. It is undeniable that increasing the number of the switching angles results in more harmonic reduction. But to have more switching angles, more output voltage levels are required which increase the number of components and cost of the converter. To improve the quality of the output voltage signal with no more components, a new harmonic elimination technique is proposed in this research. Based on this new technique, more variables (DC voltage levels and switching angles) are chosen to eliminate more low order harmonics compared to conventional harmonic elimination techniques. In conventional harmonic elimination method, DC voltage levels are same and only switching angles are calculated to eliminate harmonics. Therefore, the number of eliminated harmonic is limited by the number of switching cycles. In the proposed modulation technique, the switching angles and the DC voltage levels are calculated off-line to eliminate more harmonics. Therefore, the DC voltage levels are not equal and should be regulated. To achieve this aim, a DC/DC converter is applied to adjust the DC link voltages with several capacitors. The effect of the new harmonic elimination technique on the output quality of several single phase multilevel converters is explained in chapter 3 and 6 of this thesis. According to the electrical model of high power ultrasound transducer, this device can be modelled as parallel combinations of RLC legs with a main capacitor. The impedance diagram of the transducer in frequency domain shows it has capacitive characteristics in almost all frequencies. Therefore, using a voltage source converter to drive a high power ultrasound transducer can create significant leakage current through the transducer. It happens due to significant voltage stress (dv/dt) across the transducer. To remedy this problem, LC filters are applied in some applications. For some applications such as ultrasound, using a LC filter can deteriorate the performance of the transducer by changing its characteristics and displacing the resonance frequency of the transducer. For such a case a current source converter could be a suitable choice to overcome this problem. In this regard, a current source converter is implemented and applied to excite the high power ultrasound transducer. To control the output current and voltage, a hysteresis control and unipolar modulation are used respectively. The results of this test are explained in chapter 7.
Resumo:
A user’s query is considered to be an imprecise description of their information need. Automatic query expansion is the process of reformulating the original query with the goal of improving retrieval effectiveness. Many successful query expansion techniques ignore information about the dependencies that exist between words in natural language. However, more recent approaches have demonstrated that by explicitly modeling associations between terms significant improvements in retrieval effectiveness can be achieved over those that ignore these dependencies. State-of-the-art dependency-based approaches have been shown to primarily model syntagmatic associations. Syntagmatic associations infer a likelihood that two terms co-occur more often than by chance. However, structural linguistics relies on both syntagmatic and paradigmatic associations to deduce the meaning of a word. Given the success of dependency-based approaches and the reliance on word meanings in the query formulation process, we argue that modeling both syntagmatic and paradigmatic information in the query expansion process will improve retrieval effectiveness. This article develops and evaluates a new query expansion technique that is based on a formal, corpus-based model of word meaning that models syntagmatic and paradigmatic associations. We demonstrate that when sufficient statistical information exists, as in the case of longer queries, including paradigmatic information alone provides significant improvements in retrieval effectiveness across a wide variety of data sets. More generally, when our new query expansion approach is applied to large-scale web retrieval it demonstrates significant improvements in retrieval effectiveness over a strong baseline system, based on a commercial search engine.
Resumo:
Many successful query expansion techniques ignore information about the term dependencies that exist within natural language. However, researchers have recently demonstrated that consistent and significant improvements in retrieval effectiveness can be achieved by explicitly modelling term dependencies within the query expansion process. This has created an increased interest in dependency-based models. State-of-the-art dependency-based approaches primarily model term associations known within structural linguistics as syntagmatic associations, which are formed when terms co-occur together more often than by chance. However, structural linguistics proposes that the meaning of a word is also dependent on its paradigmatic associations, which are formed between words that can substitute for each other without effecting the acceptability of a sentence. Given the reliance on word meanings when a user formulates their query, our approach takes the novel step of modelling both syntagmatic and paradigmatic associations within the query expansion process based on the (pseudo) relevant documents returned in web search. The results demonstrate that this approach can provide significant improvements in web re- trieval effectiveness when compared to a strong benchmark retrieval system.
Resumo:
Classifier selection is a problem encountered by multi-biometric systems that aim to improve performance through fusion of decisions. A particular decision fusion architecture that combines multiple instances (n classifiers) and multiple samples (m attempts at each classifier) has been proposed in previous work to achieve controlled trade-off between false alarms and false rejects. Although analysis on text-dependent speaker verification has demonstrated better performance for fusion of decisions with favourable dependence compared to statistically independent decisions, the performance is not always optimal. Given a pool of instances, best performance with this architecture is obtained for certain combination of instances. Heuristic rules and diversity measures have been commonly used for classifier selection but it is shown that optimal performance is achieved for the `best combination performance' rule. As the search complexity for this rule increases exponentially with the addition of classifiers, a measure - the sequential error ratio (SER) - is proposed in this work that is specifically adapted to the characteristics of sequential fusion architecture. The proposed measure can be used to select a classifier that is most likely to produce a correct decision at each stage. Error rates for fusion of text-dependent HMM based speaker models using SER are compared with other classifier selection methodologies. SER is shown to achieve near optimal performance for sequential fusion of multiple instances with or without the use of multiple samples. The methodology applies to multiple speech utterances for telephone or internet based access control and to other systems such as multiple finger print and multiple handwriting sample based identity verification systems.
Resumo:
Reliability of the performance of biometric identity verification systems remains a significant challenge. Individual biometric samples of the same person (identity class) are not identical at each presentation and performance degradation arises from intra-class variability and inter-class similarity. These limitations lead to false accepts and false rejects that are dependent. It is therefore difficult to reduce the rate of one type of error without increasing the other. The focus of this dissertation is to investigate a method based on classifier fusion techniques to better control the trade-off between the verification errors using text-dependent speaker verification as the test platform. A sequential classifier fusion architecture that integrates multi-instance and multisample fusion schemes is proposed. This fusion method enables a controlled trade-off between false alarms and false rejects. For statistically independent classifier decisions, analytical expressions for each type of verification error are derived using base classifier performances. As this assumption may not be always valid, these expressions are modified to incorporate the correlation between statistically dependent decisions from clients and impostors. The architecture is empirically evaluated by applying the proposed architecture for text dependent speaker verification using the Hidden Markov Model based digit dependent speaker models in each stage with multiple attempts for each digit utterance. The trade-off between the verification errors is controlled using the parameters, number of decision stages (instances) and the number of attempts at each decision stage (samples), fine-tuned on evaluation/tune set. The statistical validation of the derived expressions for error estimates is evaluated on test data. The performance of the sequential method is further demonstrated to depend on the order of the combination of digits (instances) and the nature of repetitive attempts (samples). The false rejection and false acceptance rates for proposed fusion are estimated using the base classifier performances, the variance in correlation between classifier decisions and the sequence of classifiers with favourable dependence selected using the 'Sequential Error Ratio' criteria. The error rates are better estimated by incorporating user-dependent (such as speaker-dependent thresholds and speaker-specific digit combinations) and class-dependent (such as clientimpostor dependent favourable combinations and class-error based threshold estimation) information. The proposed architecture is desirable in most of the speaker verification applications such as remote authentication, telephone and internet shopping applications. The tuning of parameters - the number of instances and samples - serve both the security and user convenience requirements of speaker-specific verification. The architecture investigated here is applicable to verification using other biometric modalities such as handwriting, fingerprints and key strokes.
Resumo:
This study reports the synthesis of extremely high aspect ratios (>3000) organic semiconductor nanowires of Ag–tetracyanoquinodimethane (AgTCNQ) on the surface of a flexible Ag fabric for the first time. These one-dimensional (1D) hybrid Ag/AgTCNQ nanostructures are attained by a facile, solution-based spontaneous reaction involving immersion of Ag fabrics in an acetonitrile solution of TCNQ. Further, it is discovered that these AgTCNQ nanowires show outstanding antibacterial performance against both Gram negative and Gram positive bacteria, which outperforms that of pristine Ag. The outcomes of this study also reflect upon a fundamentally important aspect that the antimicrobial performance of Ag-based nanomaterials may not necessarily be solely due to the amount of Ag+ ions leached from these nanomaterials, but that the nanomaterial itself may also play a direct role in the antimicrobial action. Notably, the applications of metal-organic semiconducting charge transfer complexes of metal-7,7,8,8-tetracyanoquinodimethane (TCNQ) have been predominantly restricted to electronic applications, except from our recent reports on their (photo)catalytic potential and the current case on antimicrobial prospects. This report on growth of these metal-TCNQ complexes on a fabric not only widens the window of these interesting materials for new biological applications, it also opens the possibilities for developing large-area flexible electronic devices by growing a range of metal-organic semiconducting materials directly on a fabric surface.
Resumo:
Background The expansion of cell colonies is driven by a delicate balance of several mechanisms including cell motility, cell-to-cell adhesion and cell proliferation. New approaches that can be used to independently identify and quantify the role of each mechanism will help us understand how each mechanism contributes to the expansion process. Standard mathematical modelling approaches to describe such cell colony expansion typically neglect cell-to-cell adhesion, despite the fact that cell-to-cell adhesion is thought to play an important role. Results We use a combined experimental and mathematical modelling approach to determine the cell diffusivity, D, cell-to-cell adhesion strength, q, and cell proliferation rate, ?, in an expanding colony of MM127 melanoma cells. Using a circular barrier assay, we extract several types of experimental data and use a mathematical model to independently estimate D, q and ?. In our first set of experiments, we suppress cell proliferation and analyse three different types of data to estimate D and q. We find that standard types of data, such as the area enclosed by the leading edge of the expanding colony and more detailed cell density profiles throughout the expanding colony, does not provide sufficient information to uniquely identify D and q. We find that additional data relating to the degree of cell-to-cell clustering is required to provide independent estimates of q, and in turn D. In our second set of experiments, where proliferation is not suppressed, we use data describing temporal changes in cell density to determine the cell proliferation rate. In summary, we find that our experiments are best described using the range D = 161 - 243 ?m2 hour-1, q = 0.3 - 0.5 (low to moderate strength) and ? = 0.0305 - 0.0398 hour-1, and with these parameters we can accurately predict the temporal variations in the spatial extent and cell density profile throughout the expanding melanoma cell colony. Conclusions Our systematic approach to identify the cell diffusivity, cell-to-cell adhesion strength and cell proliferation rate highlights the importance of integrating multiple types of data to accurately quantify the factors influencing the spatial expansion of melanoma cell colonies.
Resumo:
A long query provides more useful hints for searching relevant documents, but it is likely to introduce noise which affects retrieval performance. In order to smooth such adverse effect, it is important to reduce noisy terms, introduce and boost additional relevant terms. This paper presents a comprehensive framework, called Aspect Hidden Markov Model (AHMM), which integrates query reduction and expansion, for retrieval with long queries. It optimizes the probability distribution of query terms by utilizing intra-query term dependencies as well as the relationships between query terms and words observed in relevance feedback documents. Empirical evaluation on three large-scale TREC collections demonstrates that our approach, which is automatic, achieves salient improvements over various strong baselines, and also reaches a comparable performance to a state of the art method based on user’s interactive query term reduction and expansion.
Resumo:
There has been significant research in the field of database watermarking recently. However, there has not been sufficient attention given to the requirement of providing reversibility (the ability to revert back to original relation from watermarked relation) and blindness (not needing the original relation for detection purpose) at the same time. This model has several disadvantages over reversible and blind watermarking (requiring only the watermarked relation and secret key from which the watermark is detected and the original relation is restored) including the inability to identify the rightful owner in case of successful secondary watermarking, the inability to revert the relation to the original data set (required in high precision industries) and the requirement to store the unmarked relation at a secure secondary storage. To overcome these problems, we propose a watermarking scheme that is reversible as well as blind. We utilize difference expansion on integers to achieve reversibility. The major advantages provided by our scheme are reversibility to a high quality original data set, rightful owner identification, resistance against secondary watermarking attacks, and no need to store the original database at a secure secondary storage. We have implemented our scheme and results show the success rate is limited to 11% even when 48% tuples are modified.
Resumo:
There has been significant research in the field of database watermarking recently. However, there has not been sufficient attention given to the requirement of providing reversibility (the ability to revert back to original relation from watermarked relation) and blindness (not needing the original relation for detection purpose) at the same time. This model has several disadvantages over reversible and blind watermarking (requiring only the watermarked relation and secret key from which the watermark is detected and the original relation is restored) including the inability to identify the rightful owner in case of successful secondary watermarking, the inability to revert the relation to the original data set (required in high precision industries) and the requirement to store the unmarked relation at a secure secondary storage. To overcome these problems, we propose a watermarking scheme that is reversible as well as blind. We utilize difference expansion on integers to achieve reversibility. The major advantages provided by our scheme are reversibility to a high quality original data set, rightful owner identification, resistance against secondary watermarking attacks, and no need to store the original database at a secure secondary storage. We have implemented our scheme and results show the success rate is limited to 11% even when 48% tuples are modified.
Resumo:
A modular, graphic-oriented Internet browser has been developed to enable non-technical client access to a literal spinning world of information and remotely sensed. The Earth Portal (www.earthportal.net) uses the ManyOne browser (www.manyone.net) to provide engaging point and click views of the Earth fully tessellated with remotely sensed imagery and geospatial data. The ManyOne browser technology use Mozilla with embedded plugins to apply multiple 3-D graphics engines, e.g. ArcGlobe or GeoFusion, that directly link with the open-systems architecture of the geo-spatial infrastructure. This innovation allows for rendering of satellite imagery directly over the Earth's surface and requires no technical training by the web user. Effective use of this global distribution system for the remote sensing community requires a minimal compliance with protocols and standards that have been promoted by NSDI and other open-systems standards organizations.
Resumo:
The basic reproduction number of a pathogen, R 0, determines whether a pathogen will spread (R0>1R 0>1), when introduced into a fully susceptible population or fade out (R0<1R 0<1), because infected hosts do not, on average, replace themselves. In this paper we develop a simple mechanistic model for the basic reproduction number for a group of tick-borne pathogens that wholly, or almost wholly, depend on horizontal transmission to and from vertebrate hosts. This group includes the causative agent of Lyme disease, Borrelia burgdorferi, and the causative agent of human babesiosis, Babesia microti, for which transmission between co-feeding ticks and vertical transmission from adult female ticks are both negligible. The model has only 19 parameters, all of which have a clear biological interpretation and can be estimated from laboratory or field data. The model takes into account the transmission efficiency from the vertebrate host as a function of the days since infection, in part because of the potential for this dynamic to interact with tick phenology, which is also included in the model. This sets the model apart from previous, similar models for R0 for tick-borne pathogens. We then define parameter ranges for the 19 parameters using estimates from the literature, as well as laboratory and field data, and perform a global sensitivity analysis of the model. This enables us to rank the importance of the parameters in terms of their contribution to the observed variation in R0. We conclude that the transmission efficiency from the vertebrate host to Ixodes scapularis ticks, the survival rate of Ixodes scapularis from fed larva to feeding nymph, and the fraction of nymphs finding a competent host, are the most influential factors for R0. This contrasts with other vector borne pathogens where it is usually the abundance of the vector or host, or the vector-to-host ratio, that determine conditions for emergence. These results are a step towards a better understanding of the geographical expansion of currently emerging horizontally transmitted tick-borne pathogens such as Babesia microti, as well as providing a firmer scientific basis for targeted use of acaricide or the application of wildlife vaccines that are currently in development.
Resumo:
The present study focused on simulating a trajectory point towards the end of the first experimental heatshield of the FIRE II vehicle, at a total flight time of 1639.53s. Scale replicas were sized according to binary scaling and instrumented with thermocouples for testing in the X1 expansion tube, located at The University of Queensland. Correlation of flight to experimental data was achieved through the separation, and independent treatment of the heat modes. Preliminary investigation indicates that the absolute value of radiant surface flux is conserved between two binary scaled models, whereas convective heat transfer increases with the length scale. This difference in the scaling techniques result in the overall contribution of radiative heat transfer diminishing to less than 1% in expansion tubes from a flight value of approximately 9-17%. From empirical correlation's it has been shown that the St √Re number decreases, under special circumstances, in expansion tubes by the percentage radiation present on the flight vehicle. Results obtained in this study give a strong indication that the relative radiative heat transfer contribution in the expansion tube tests is less than that in flight, supporting the analysis that the absolute value remains constant with binary scaling.