925 resultados para evolutionary history
Resumo:
The mitochondrial genome complete sequence of Achalinus meiguensis was reported for the first time in the present study. The complete mitochondrial genome of A. meiguensis is 17239 bp in length and contains 13 protein-coding genes, 22 tRNA, 2 rRNA, and 2 non-coding regions (Control regions). On the basis of comparison with the other complete mitochondrial sequences reported, we explored the characteristic of structure and evolution. For example, duplication control regions independently occurred in the evolutionary history of reptiles; the pseudo-tRNA of snakes occurred in the Caenophidia; snake is shorter than other vertebrates in the length of tRNA because of the truncations of T psi C arm (less than 5 bp) and "DHU" arm. The phylogenic analysis by MP and BI analysis showed that the phylogenetic position of A. meiguensis was placed in Caenophidia as a sister group to other advanced snakes with the exclusion of Acrochordus granulatus which was rooted in the Caenophidia. Therefore we suggested that the subfamily Xenodermatinae, which contains A. meiguensis, should be raised to a family rank or higher rank. At the same time, based on the phylogenic statistic test, the tree of Bayesian was used for estimating the divergence time. The results showed that the divergence time between Henophidia and Caenophidia was 109.50 Mya; 106.18 Mya for divergence between Acrochordus granulatus and the other snakes of the Caenophidia; the divergence time of A. meiguensis was 103 Mya, and Viperidae diverged from the unilateral of Elapidae and Colubridae was 96.06 Mya.
Resumo:
C1q is the first subcomponent of classical pathway in the complement system and a major link between innate and acquired immunities. The globular (gC1q) domain similar with C1q was also found in many non-complement C1q-domain-containing (C1qDC) proteins which have similar crystal structure to that of the multifunctional tumor necrosis factor (TNF) ligand family, and also have diverse functions. In this study, we identified a total of 52 independent gene sequences encoding C1q-domain-containing proteins through comprehensive searches of zebrafish genome, cDNA and EST databases. In comparison to 31 orthologous genes in human and different numbers in other species, a significant selective pressure was suggested during vertebrate evolution. Domain organization of C1q-domain-containing (C1qDC) proteins mainly includes a leading signal peptide, a collagen-like region of variable length, and a C-terminal C1q domain. There are 11 highly conserved residues within the C1q domain, among which 2 are invariant within the zebrafish gene set. A more extensive database searches also revealed homologous C1qDC proteins in other vertebrates, invertebrates and even bacterium, but no homologous sequences for encoding C1qDC proteins were found in many species that have a more recent evolutionary history with zebrafish. Therefore, further studies on C1q-domain-containing genes among different species will help us understand evolutionary mechanism of innate and acquired immunities.
Resumo:
The complete internal transcribed spacer 1 (ITS1), 5.8S ribosomal DNA, and ITS2 region of the ribosomal DNA from 60 specimens belonging to two closely related bucephalid digeneans (Dollfustrema vaneyi and Dollfustrema hefeiensis) from different localities, hosts, and microhabitat sites were cloned to examine the level of sequence variation and the taxonomic levels to show utility in species identification and phylogeny estimation. Our data show that these molecular markers can help to discriminate the two species, which are morphologically very close and difficult to separate by classical methods. We found 21 haplotypes defined by 44 polymorphic positions in 38 individuals of D. vaneyi, and 16 haplotypes defined by 43 polymorphic positions in 22 individuals of D. hefeiensis. There is no shared haplotypes between the two species. Haplotype rather than nucleotide diversity is similar between the two species. Phylogenetic analyses reveal two robustly supported clades, one corresponding to D. vaneyi and the other corresponding to D. hefeiensis. However, the population structures between the two species seem to be incongruent and show no geographic and host-specific structure among them, further indicating that the two species may have had a more complex evolutionary history than expected.
Resumo:
The Sox gene family is found in a broad range of animal taxa and encodes important gene regulatory proteins involved in a variety of developmental processes. We have obtained clones representing the HMG boxes of twelve Sox genes from grass carp (Ctenopharyngodon idella), one of the four major domestic carps in China. The cloned Sox genes belong to group B1, B2 and C. Our analyses show that whereas the human genome contains a single copy of Sox4, Sox11 and Sox14, each of these genes has two co-orthologs in grass carp, and the duplication of Sox4 and Sox11 occurred before the divergence of grass carp and zebrafish, which support the "fish-specific whole-genome duplication" theory. An estimation for the origin of grass carp based on the molecular clock using Sox1, Sox3 and Sox11 genes as markers indicates that grass carp (subfamily Leuciscinae) and zebrafish (subfamily Danioninae) diverged approximately 60 million years ago. The potential uses of Sox genes as markers in revealing the evolutionary history of grass carp are discussed.
Resumo:
Understanding the population genetic structure is a prerequisite for conservation of a species. The degree of genetic variability characteristic of the mitochondrial DNA control region has been widely exploited in studies of population genetic structure and can be useful in identifying meaningful population subdivisions. To estimate the genetic profile of the Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis), an endangered freshwater population endemic to China, the complete mtDNA control region was examined in 39 individuals belonging to seven different stocks inhabiting the middle and lower reaches of the Yangtze River. Very low genetic diversity was found (nucleotide diversity 0.0011 +/- 0.0002 and haplotypic diversity 0.65 +/- 0.05). The mtDNA genetic pattern of the Yangtze population appears to indicate a founder event in its evolutionary history and to support the marine origin for this population. Analyses by F-st and Phi(st) yielded statistically significant population genetic structure (F-st = 0.44, P < 0.05; phi(st) = 0.36, P < 0.05). These results may have significant implications for the management and conservation of the Yangtze finless porpoise in the future.
Resumo:
Seagrasses, marine flowering plants, have a long evolutionary history but are now challenged with rapid environmental changes as a result of coastal human population pressures. Seagrasses provide key ecological services, including organic carbon production and export, nutrient cycling, sediment stabilization, enhanced biodiversity, and trophic transfers to adjacent habitats in tropical and temperate regions. They also serve as “coastal canaries,” global biological sentinels of increasing anthropogenic influences in coastal ecosystems, with large-scale losses reported worldwide. Multiple stressors, including sediment and nutrient runoff, physical disturbance, invasive species, disease, commercial fishing practices, aquaculture, overgrazing, algal blooms, and global warming, cause seagrass declines at scales of square meters to hundreds of square kilometers. Reported seagrass losses have led to increased awareness of the need for seagrass protection, monitoring, management, and restoration. However, seagrass science, which has rapidly grown, is disconnected from public awareness of seagrasses, which has lagged behind awareness of other coastal ecosystems. There is a critical need for a targeted global conservation effort that includes a reduction of watershed nutrient and sediment inputs to seagrass habitats and a targeted educational program informing regulators and the public of the value of seagrass meadows.
Resumo:
Arthrospira (Spirulina) (Setchell& Gardner) is an important cyanobacterium not only in its nutritional potential but in its special biological characteristics. An unbiased fosmid library of Arthrospira maxima FACHB438 that contains 4300 clones was constructed. The size distribution of insert fragments is from 15.5 to 48.9 kb and the average size is 37.6 kb. The recombination frequency is 100%. Therefore the library is 29.9 equivalents to the Arthrospira genome size of 5.4 Mb. A total of 719 sample clones were randomly chosen from the library and 602 available sequences, which consisted of 307,547 bases, covering 5.70% of the whole genome. The codon usage of A. maxima was not strongly biased. GC content at the first position of codons (46.9%) was higher than the second (39.8%) and the third (45.5%) positions. GC content of the genome was 43.6%. Of these sequences, 287 (47.7%) showed high similarities to known genes, 63 (10.5%) to hypothetical genes and the remaining 252 (41.8%) had no significant similarities. The assigned genes were classified into 22 categories with respect to different biological roles. Remarkably, the high presence of 25 sequences (4.2%) encoding reverse transcriptase indicates the RT gene may have multiple copies in the A. maxima genome and might play an important role in the evolutionary history and metabolic regulation. In addition, the sequences encoding the ATP-binding cassette transport system and the two-component signal transduction system were the second and third most frequent genes, respectively. These genomic features provide some clues as to the mechanisms by which this organism adapts to the high concentration of bicarbonate and to the high pH environment.
Resumo:
The authors would like to thank Jin Sun, Jian Sun, Liangliang Kong, Nianshuang Wang, Chunhui Wang, Linbao Zhang and Ying Zhang for their assistance in the project. This work was supported by China Ocean Mineral Resources R&D Association grants DYXM-115-02-2-20 and DYXM-115-02-2-6, Hi-Tech Research and Development Program of China grant 2007AA091903, China National Natural Science Foundation grant 40576069, National Basic Research Program of China grant 2009CB219506 and the Fundamental Research Funds for the Central Universities of China grant 09CX05005A. M. G. K. was funded by incentive funds provided by the UofL-EVPR office and the US National Science Foundation (EF-0412129).
Resumo:
Godao area, located in the east of the Zhanhua depression of Jirang sag in Bohai Bay Basin, is the studying area in my dissertation. It is first time that fault sealing properties and the related relationship with the pool forming are studied in Gudao area. On the base of the analysis of the regional tectonics, the author has studied the tertiary structural evolution of the Gudao area and distinguished the fault's level and put forward the distinguishing principle. The geometrical feature, mechanical characters, developmental mechanism and history of the boundary faults in the tectonic unit of this area are all studied and emphasized especially. The buried history of oil-generating depression (that is Gudao depression) and the history of oil and gas migration simultaneously are discussed, the juxtaposition relationship between boundary fault evolutionary history and oil and gas migrated history are expatiated. To the geological condition of the Gudao area, three level faults sealing properties of this area were discussed in detail. Their characteristics of behavior and the intrinsic relationship between their sealing and oil and gas migrated reservoir are elucidated. The pool-forming models related to fault seal are exposed. The author has studied the lithologies of different order of faults, the relationship of occurrence assemblage analysis, normal stress of fault plane in different depth and shale smear factor faults. Then analysis their role in the various faults sealing and confirms fault sealing marks of three different orders faults and exposes the mechanism of fault sealing. Shale smear zone formed by first order fault in lasting activities is one different type of fault breccia and mainly controlled factor to its entrapment of petroleum. Effective sealing threshold value and fault displacement is ascertained. Mainly controlled factor of second fault sealing is bigger compressive stress loaded on fault plane. According to this, quantitatively evaluated index is given. Shale smear zone is necessary condition for second fault stress entrapment. The juxtaposed relationship between the different lithologies within third order faults is most important controlled factor for its sealing. Based on various order of fault sealing features and mechanism in Gudao area, the author proposed three orders of fault sealing models. Shale smear zone sealing model, normal stress sealing model and lithologies juxtaposed sealing model are suggested to first, second and third order fault respectively. The conclusion of this studying has not only the very important theoretical significance and practical value in Gudo area but also the very important guiding role for other areas of related aspects.
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas
Resumo:
The population structure of an organism reflects its evolutionary history and influences its evolutionary trajectory. It constrains the combination of genetic diversity and reveals patterns of past gene flow. Understanding it is a prerequisite for detecting genomic regions under selection, predicting the effect of population disturbances, or modeling gene flow. This paper examines the detailed global population structure of Arabidopsis thaliana. Using a set of 5,707 plants collected from around the globe and genotyped at 149 SNPs, we show that while A. thaliana as a species self-fertilizes 97% of the time, there is considerable variation among local groups. This level of outcrossing greatly limits observed heterozygosity but is sufficient to generate considerable local haplotypic diversity. We also find that in its native Eurasian range A. thaliana exhibits continuous isolation by distance at every geographic scale without natural breaks corresponding to classical notions of populations. By contrast, in North America, where it exists as an exotic species, A. thaliana exhibits little or no population structure at a continental scale but local isolation by distance that extends hundreds of km. This suggests a pattern for the development of isolation by distance that can establish itself shortly after an organism fills a new habitat range. It also raises questions about the general applicability of many standard population genetics models. Any model based on discrete clusters of interchangeable individuals will be an uneasy fit to organisms like A. thaliana which exhibit continuous isolation by distance on many scales.
Resumo:
Understanding animals' spatial perception is a critical step toward discerning their cognitive processes. The spatial sense is multimodal and based on both the external world and mental representations of that world. Navigation in each species depends upon its evolutionary history, physiology, and ecological niche. We carried out foraging experiments on wild vervet monkeys (Chlorocebus pygerythrus) at Lake Nabugabo, Uganda, to determine the types of cues used to detect food and whether associative cues could be used to find hidden food. Our first and second set of experiments differentiated between vervets' use of global spatial cues (including the arrangement of feeding platforms within the surrounding vegetation) and/or local layout cues (the position of platforms relative to one another), relative to the use of goal-object cues on each platform. Our third experiment provided an associative cue to the presence of food with global spatial, local layout, and goal-object cues disguised. Vervets located food above chance levels when goal-object cues and associative cues were present, and visual signals were the predominant goal-object cues that they attended to. With similar sample sizes and methods as previous studies on New World monkeys, vervets were not able to locate food using only global spatial cues and local layout cues, unlike all five species of platyrrhines thus far tested. Relative to these platyrrhines, the spatial location of food may need to stay the same for a longer time period before vervets encode this information, and goal-object cues may be more salient for them in small-scale space.
Resumo:
In many mammals, early social experience is critical to developing species-appropriate adult behaviors. Although mother-infant interactions play an undeniably significant role in social development, other individuals in the social milieu may also influence infant outcomes. Additionally, the social skills necessary for adult success may differ between the sexes. In chimpanzees (Pan troglodytes), adult males are more gregarious than females and rely on a suite of competitive and cooperative relationships to obtain access to females. In fission-fusion species, including humans and chimpanzees, subgroup composition is labile and individuals can vary the number of individuals with whom they associate. Thus, mothers in these species have a variety of social options. In this study, we investigated whether wild chimpanzee maternal subgrouping patterns differed based on infant sex. Our results show that mothers of sons were more gregarious than mothers of daughters; differences were especially pronounced during the first 6 mo of life, when infant behavior is unlikely to influence maternal subgrouping. Furthermore, mothers with sons spent significantly more time in parties containing males during the first 6 mo. These early differences foreshadow the well-documented sex differences in adult social behavior, and maternal gregariousness may provide sons with important observational learning experiences and social exposure early in life. The presence of these patterns in chimpanzees raises questions concerning the evolutionary history of differential social exposure and its role in shaping sex-typical behavior in humans.
Resumo:
Plant phototropism, the ability to bend toward or away from light, is predominantly controlled by blue-light photoreceptors, the phototropins. Although phototropins have been well-characterized in Arabidopsis thaliana, their evolutionary history is largely unknown. In this study, we complete an in-depth survey of phototropin homologs across land plants and algae using newly available transcriptomic and genomic data. We show that phototropins originated in an ancestor of Viridiplantae (land plants + green algae). Phototropins repeatedly underwent independent duplications in most major land-plant lineages (mosses, lycophytes, ferns, and seed plants), but remained single-copy genes in liverworts and hornworts-an evolutionary pattern shared with another family of photoreceptors, the phytochromes. Following each major duplication event, the phototropins differentiated in parallel, resulting in two specialized, yet partially overlapping, functional forms that primarily mediate either low- or high-light responses. Our detailed phylogeny enables us to not only uncover new phototropin lineages, but also link our understanding of phototropin function in Arabidopsis with what is known in Adiantum and Physcomitrella (the major model organisms outside of flowering plants). We propose that the convergent functional divergences of phototropin paralogs likely contributed to the success of plants through time in adapting to habitats with diverse and heterogeneous light conditions.
Resumo:
The origin of neurons was a key event in evolution, allowing metazoans to evolve rapid behavioral responses to environmental cues. Reconstructing the origin of synaptic proteins promises to reveal their ancestral functions and might shed light on the evolution of the first neuron-like cells in metazoans. By analyzing the genomes of diverse metazoans and their closest relatives, the evolutionary history of diverse presynaptic and postsynaptic proteins has been reconstructed. These analyses revealed that choanoflagellates, the closest relatives of metazoans, possess diverse synaptic protein homologs. Recent studies have now begun to investigate their ancestral functions. A primordial neurosecretory apparatus in choanoflagellates was identified and it was found that the mechanism, by which presynaptic proteins required for secretion of neurotransmitters interact, is conserved in choanoflagellates and metazoans. Moreover, studies on the postsynaptic protein homolog Homer revealed unexpected localization patterns in choanoflagellates and new binding partners, both which are conserved in metazoans. These findings demonstrate that the study of choanoflagellates can uncover ancient and previously undescribed functions of synaptic proteins.