900 resultados para estimating
Resumo:
Bone marrow hematopoietic stem cells (HSCs) are responsible for both lifelong daily maintenance of all blood cells and for repair after cell loss. Until recently the cellular mechanisms by which HSCs accomplish these two very different tasks remained an open question. Biological evidence has now been found for the existence of two related mouse HSC populations. First, a dormant HSC (d-HSC) population which harbors the highest self-renewal potential of all blood cells but is only induced into active self-renewal in response to hematopoietic stress. And second, an active HSC (a-HSC) subset that by and large produces the progenitors and mature cells required for maintenance of day-to-day hematopoiesis. Here we present computational analyses further supporting the d-HSC concept through extensive modeling of experimental DNA label-retaining cell (LRC) data. Our conclusion that the presence of a slowly dividing subpopulation of HSCs is the most likely explanation (amongst the various possible causes including stochastic cellular variation) of the observed long term Bromodeoxyuridine (BrdU) retention, is confirmed by the deterministic and stochastic models presented here. Moreover, modeling both HSC BrdU uptake and dilution in three stages and careful treatment of the BrdU detection sensitivity permitted improved estimates of HSC turnover rates. This analysis predicts that d-HSCs cycle about once every 149-193 days and a-HSCs about once every 28-36 days. We further predict that, using LRC assays, a 75%-92.5% purification of d-HSCs can be achieved after 59-130 days of chase. Interestingly, the d-HSC proportion is now estimated to be around 30-45% of total HSCs - more than twice that of our previous estimate.
Resumo:
Knowledge of the soil water retention curve (SWRC) is essential for understanding and modeling hydraulic processes in the soil. However, direct determination of the SWRC is time consuming and costly. In addition, it requires a large number of samples, due to the high spatial and temporal variability of soil hydraulic properties. An alternative is the use of models, called pedotransfer functions (PTFs), which estimate the SWRC from easy-to-measure properties. The aim of this paper was to test the accuracy of 16 point or parametric PTFs reported in the literature on different soils from the south and southeast of the State of Pará, Brazil. The PTFs tested were proposed by Pidgeon (1972), Lal (1979), Aina & Periaswamy (1985), Arruda et al. (1987), Dijkerman (1988), Vereecken et al. (1989), Batjes (1996), van den Berg et al. (1997), Tomasella et al. (2000), Hodnett & Tomasella (2002), Oliveira et al. (2002), and Barros (2010). We used a database that includes soil texture (sand, silt, and clay), bulk density, soil organic carbon, soil pH, cation exchange capacity, and the SWRC. Most of the PTFs tested did not show good performance in estimating the SWRC. The parametric PTFs, however, performed better than the point PTFs in assessing the SWRC in the tested region. Among the parametric PTFs, those proposed by Tomasella et al. (2000) achieved the best accuracy in estimating the empirical parameters of the van Genuchten (1980) model, especially when tested in the top soil layer.
Resumo:
Estimating the time since discharge of a spent cartridge or a firearm can be useful in criminal situa-tions involving firearms. The analysis of volatile gunshot residue remaining after shooting using solid-phase microextraction (SPME) followed by gas chromatography (GC) was proposed to meet this objective. However, current interpretative models suffer from several conceptual drawbacks which render them inadequate to assess the evidential value of a given measurement. This paper aims to fill this gap by proposing a logical approach based on the assessment of likelihood ratios. A probabilistic model was thus developed and applied to a hypothetical scenario where alternative hy-potheses about the discharge time of a spent cartridge found on a crime scene were forwarded. In order to estimate the parameters required to implement this solution, a non-linear regression model was proposed and applied to real published data. The proposed approach proved to be a valuable method for interpreting aging-related data.
Resumo:
Under field conditions in the Amazon forest, soil bulk density is difficult to measure. Rigorous methodological criteria must be applied to obtain reliable inventories of C stocks and soil nutrients, making this process expensive and sometimes unfeasible. This study aimed to generate models to estimate soil bulk density based on parameters that can be easily and reliably measured in the field and that are available in many soil-related inventories. Stepwise regression models to predict bulk density were developed using data on soil C content, clay content and pH in water from 140 permanent plots in terra firme (upland) forests near Manaus, Amazonas State, Brazil. The model results were interpreted according to the coefficient of determination (R2) and Akaike information criterion (AIC) and were validated with a dataset consisting of 125 plots different from those used to generate the models. The model with best performance in estimating soil bulk density under the conditions of this study included clay content and pH in water as independent variables and had R2 = 0.73 and AIC = -250.29. The performance of this model for predicting soil density was compared with that of models from the literature. The results showed that the locally calibrated equation was the most accurate for estimating soil bulk density for upland forests in the Manaus region.
Resumo:
Low socioeconomic status has been reported to be associated with head and neck cancer risk. However, previous studies have been too small to examine the associations by cancer subsite, age, sex, global region, and calendar time, and to explain the association in terms of behavioural risk factors. Individual participant data of 23,964 cases with head and neck cancer and 31,954 controls from 31 studies in 27 countries pooled with random effects models. Overall, low education was associated with an increased risk of head and neck cancer (OR = 2·50; 95%CI 2·02- 3·09). Overall one-third of the increased risk was not explained by differences in the distribution of cigarette smoking and alcohol behaviours; and it remained elevated among never users of tobacco and non-drinkers (OR = 1·61; 95%CI 1·13 - 2·31). More of the estimated education effect was not explained by cigarette smoking and alcohol behaviours: in women than in men, in older than younger groups, in the oropharynx than in other sites, in South/Central America than in Europe/North America, and was strongest in countries with greater income inequality. Similar findings were observed for the estimated effect of low vs high household income. The lowest levels of income and educational attainment were associated with more than 2-fold increased risk of head and neck cancer, which is not entirely explained by differences in the distributions of behavioural risk factors for these cancers, and which varies across cancer sites, sexes, countries, and country income inequality levels. © 2014 Wiley Periodicals, Inc.
Resumo:
A major issue in the application of waveform inversion methods to crosshole georadar data is the accurate estimation of the source wavelet. Here, we explore the viability and robustness of incorporating this step into a time-domain waveform inversion procedure through an iterative deconvolution approach. Our results indicate that, at least in non-dispersive electrical environments, such an approach provides remarkably accurate and robust estimates of the source wavelet even in the presence of strong heterogeneity in both the dielectric permittivity and electrical conductivity. Our results also indicate that the proposed source wavelet estimation approach is relatively insensitive to ambient noise and to the phase characteristics of the starting wavelet. Finally, there appears to be little-to-no trade-off between the wavelet estimation and the tomographic imaging procedures.
Resumo:
State general fund revenue estimates are generated by the Iowa Revenue Estimating Conference (REC). The REC is comprised of the Governor or their designee, the Director of the Legislative Services Agency, and a third person agreed upon by the other two members. The REC meets periodically, generally in October, December, and March/April. The Governor and the Legislature are required to use the REC estimates in preparing the state budget.
Resumo:
This paper introduces a nonlinear measure of dependence between random variables in the context of remote sensing data analysis. The Hilbert-Schmidt Independence Criterion (HSIC) is a kernel method for evaluating statistical dependence. HSIC is based on computing the Hilbert-Schmidt norm of the cross-covariance operator of mapped samples in the corresponding Hilbert spaces. The HSIC empirical estimator is very easy to compute and has good theoretical and practical properties. We exploit the capabilities of HSIC to explain nonlinear dependences in two remote sensing problems: temperature estimation and chlorophyll concentration prediction from spectra. Results show that, when the relationship between random variables is nonlinear or when few data are available, the HSIC criterion outperforms other standard methods, such as the linear correlation or mutual information.
Resumo:
BACKGROUND: Since the emergence of diffusion tensor imaging, a lot of work has been done to better understand the properties of diffusion MRI tractography. However, the validation of the reconstructed fiber connections remains problematic in many respects. For example, it is difficult to assess whether a connection is the result of the diffusion coherence contrast itself or the simple result of other uncontrolled parameters like for example: noise, brain geometry and algorithmic characteristics. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we propose a method to estimate the respective contributions of diffusion coherence versus other effects to a tractography result by comparing data sets with and without diffusion coherence contrast. We use this methodology to assign a confidence level to every gray matter to gray matter connection and add this new information directly in the connectivity matrix. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that whereas we can have a strong confidence in mid- and long-range connections obtained by a tractography experiment, it is difficult to distinguish between short connections traced due to diffusion coherence contrast from those produced by chance due to the other uncontrolled factors of the tractography methodology.
Resumo:
This report provides techniques and procedures for estimating the probable magnitude and frequency of floods at ungaged sites on Iowa streams. Physiographic characteristics were used to define the boundaries of five hydrologic regions. Regional regression equations that relate the size of the drainage area to flood magnitude are defined for estimating peak discharges having specified recurrence intervals of 2, 5, 10, 25, 50, and 100 years. Regional regression equations are applicable to sites on streams that have drainage areas ranging from 0.04 to 5,150 square miles provided that the streams are not affected significantly by regulation upstream from the sites and that the drainage areas upstream from the sites are not mostly urban areas. Flood-frequency characteristics for the mainstems of selected rivers are presented in graphs as a function of drainage area.
Resumo:
Drainage-basin and channel-geometry multiple-regression equations are presented for estimating design-flood discharges having recurrence intervals of 2, 5, 10, 25, 50, and 100 years at stream sites on rural, unregulated streams in Iowa. Design-flood discharge estimates determined by Pearson Type-III analyses using data collected through the 1990 water year are reported for the 188 streamflow-gaging stations used in either the drainage-basin or channel-geometry regression analyses. Ordinary least-squares multiple-regression techniques were used to identify selected drainage-basin and channel-geometry regions. Weighted least-squares multiple-regression techniques, which account for differences in the variance of flows at different gaging stations and for variable lengths in station records, were used to estimate the regression parameters. Statewide drainage-basin equations were developed from analyses of 164 streamflow-gaging stations. Drainage-basin characteristics were quantified using a geographic-information-system (GIS) procedure to process topographic maps and digital cartographic data. The significant characteristics identified for the drainage-basin equations included contributing drainage area, relative relief, drainage frequency, and 2-year, 24-hour precipitation intensity. The average standard errors of prediction for the drainage-basin equations ranged from 38.6% to 50.2%. The GIS procedure expanded the capability to quantitatively relate drainage-basin characteristics to the magnitude and frequency of floods for stream sites in Iowa and provides a flood-estimation method that is independent of hydrologic regionalization. Statewide and regional channel-geometry regression equations were developed from analyses of 157 streamflow-gaging stations. Channel-geometry characteristics were measured on site and on topographic maps. Statewide and regional channel-geometry regression equations that are dependent on whether a stream has been channelized were developed on the basis of bankfull and active-channel characteristics. The significant channel-geometry characteristics identified for the statewide and regional regression equations included bankfull width and bankfull depth for natural channels unaffected by channelization, and active-channel width for stabilized channels affected by channelization. The average standard errors of prediction ranged from 41.0% to 68.4% for the statewide channel-geometry equations and from 30.3% to 70.0% for the regional channel-geometry equations. Procedures provided for applying the drainage-basin and channel-geometry regression equations depend on whether the design-flood discharge estimate is for a site on an ungaged stream, an ungaged site on a gaged stream, or a gaged site. When both a drainage-basin and a channel-geometry regression-equation estimate are available for a stream site, a procedure is presented for determining a weighted average of the two flood estimates.
Resumo:
A number of geophysical methods, such as ground-penetrating radar (GPR), have the potential to provide valuable information on hydrological properties in the unsaturated zone. In particular, the stochastic inversion of such data within a coupled geophysical-hydrological framework may allow for the effective estimation of vadose zone hydraulic parameters and their corresponding uncertainties. A critical issue in stochastic inversion is choosing prior parameter probability distributions from which potential model configurations are drawn and tested against observed data. A well chosen prior should reflect as honestly as possible the initial state of knowledge regarding the parameters and be neither overly specific nor too conservative. In a Bayesian context, combining the prior with available data yields a posterior state of knowledge about the parameters, which can then be used statistically for predictions and risk assessment. Here we investigate the influence of prior information regarding the van Genuchten-Mualem (VGM) parameters, which describe vadose zone hydraulic properties, on the stochastic inversion of crosshole GPR data collected under steady state, natural-loading conditions. We do this using a Bayesian Markov chain Monte Carlo (MCMC) inversion approach, considering first noninformative uniform prior distributions and then more informative priors derived from soil property databases. For the informative priors, we further explore the effect of including information regarding parameter correlation. Analysis of both synthetic and field data indicates that the geophysical data alone contain valuable information regarding the VGM parameters. However, significantly better results are obtained when we combine these data with a realistic, informative prior.
Resumo:
OBJECTIVE: Accuracy studies of Patient Safety Indicators (PSIs) are critical but limited by the large samples required due to low occurrence of most events. We tested a sampling design based on test results (verification-biased sampling [VBS]) that minimizes the number of subjects to be verified. METHODS: We considered 3 real PSIs, whose rates were calculated using 3 years of discharge data from a university hospital and a hypothetical screen of very rare events. Sample size estimates, based on the expected sensitivity and precision, were compared across 4 study designs: random and VBS, with and without constraints on the size of the population to be screened. RESULTS: Over sensitivities ranging from 0.3 to 0.7 and PSI prevalence levels ranging from 0.02 to 0.2, the optimal VBS strategy makes it possible to reduce sample size by up to 60% in comparison with simple random sampling. For PSI prevalence levels below 1%, the minimal sample size required was still over 5000. CONCLUSIONS: Verification-biased sampling permits substantial savings in the required sample size for PSI validation studies. However, sample sizes still need to be very large for many of the rarer PSIs.
Resumo:
Relaxation rates provide important information about tissue microstructure. Multi-parameter mapping (MPM) estimates multiple relaxation parameters from multi-echo FLASH acquisitions with different basic contrasts, i.e., proton density (PD), T1 or magnetization transfer (MT) weighting. Motion can particularly affect maps of the apparent transverse relaxation rate R2(*), which are derived from the signal of PD-weighted images acquired at different echo times. To address the motion artifacts, we introduce ESTATICS, which robustly estimates R2(*) from images even when acquired with different basic contrasts. ESTATICS extends the fitted signal model to account for inherent contrast differences in the PDw, T1w and MTw images. The fit was implemented as a conventional ordinary least squares optimization and as a robust fit with a small or large confidence interval. These three different implementations of ESTATICS were tested on data affected by severe motion artifacts and data with no prominent motion artifacts as determined by visual assessment or fast optical motion tracking. ESTATICS improved the quality of the R2(*) maps and reduced the coefficient of variation for both types of data-with average reductions of 30% when severe motion artifacts were present. ESTATICS can be applied to any protocol comprised of multiple 2D/3D multi-echo FLASH acquisitions as used in the general research and clinical setting.