212 resultados para epigenetics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

La Epigenética se refiere a los cambios heredables en el ADN e histonas que no implican alteraciones en la secuencia de nucleótidos y modifican la estructura y condensación de la cromatina, por lo que afectan la expresión génica y el fenotipo. Las modificaciones epigenéticas son metilación del ADN y modificaciones de histonas. Objetivo: hacer una revisión de la literatura sobre el concepto de epigenética y su impacto en la salud. Materiales y métodos: se realizó una revisión de la bibliografía sobre el concepto de epigenética, sus bases biológicas, el impacto sobre la salud y la enfermedad y su relación con la evolución. Resultados: los mecanismos epigenéticos han cobrado cada vez más importancia debido a la creciente asociación con enfermedades complejas y comunes, así como por su impacto en la salud de generaciones futuras y en la evolución humana. Conclusiones: la Epigenética tiene un claro impacto en la salud del individuo, en la de su descendencia y en la evolución de la especie humana.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objetivos: Determinar la prevalencia y los factores asociados con el desarrollo de hipotiroidismo autoinmune (HA) en una cohorte de pacientes con lupus eritematoso sistémico (LES), y analizar la información actual en cuanto a la prevalencia e impacto de la enfermedad tiroidea autoinmune y la autoinmunidad tiroidea en pacientes con LES. Métodos: Este fue un estudio realizado en dos pasos. Primero, un total de 376 pacientes con LES fueron evaluados sistemáticamente por la presencia de: 1) HA confirmado, 2) positividad para anticuerpos tiroperoxidasa/tiroglobulina (TPOAb/TgAb) sin hipotiroidismo, 3) hipotiroidismo no autoinmune, y 4) pacientes con LES sin hipotiroidismo ni positividad para TPOAb/TgAb. Se construyeron modelos multivariados y árboles de regresión y clasificación para analizar los datos. Segundo, la información actual fue evaluada a través de una revisión sistemática de la literatura (RLS). Se siguieron las guías PRISMA para la búsqueda en las bases de datos PubMed, Scopus, SciELO y Librería Virtual en Salud. Resultados: En nuestra cohorte, la prevalencia de HA confirmado fue de 12% (Grupo 1). Sin embargo, la frecuencia de positividad para TPOAb y TgAb fue de 21% y 10%, respectivamente (Grupo 2). Los pacientes con LES sin HA, hipotiroidismo no autoinmune ni positividad para TPOAb/TgAb constituyeron el 40% de la corhorte. Los pacientes con HA confirmada fueron estadísticamente significativo de mayor edad y tuvieron un inicio tardío de la enfermedad. El tabaquismo (ORA 6.93, IC 95% 1.98-28.54, p= 0.004), la presencia de Síndrome de Sjögren (SS) (ORA 23.2, IC 95% 1.89-359.53, p= 0.015) y la positividad para anticuerpos anti-péptido cíclico citrulinado (anti-CCP) (ORA 10.35, IC 95% 1.04-121.26, p= 0.047) se asociaron con la coexistencia de LES-HA, ajustado por género y duración de la enfermedad. El tabaquismo y el SS fueron confirmados como factores predictivos para LES-HA (AUC del modelo CART = 0.72). En la RSL, la prevalencia de ETA en LES varío entre 1% al 60%. Los factores asociados con esta poliautoinmunidad fueron el género femenino, edad avanzada, tabaquismo, positividad para algunos anticuerpos, SS y el compromiso articular y cutáneo. Conclusiones: La ETA es frecuente en pacientes con LES, y no afecta la severidad del LES. Los factores de riesgo identificados ayudarán a los clínicos en la búsqueda de ETA. Nuestros resultados deben estimular políticas para la suspensión del tabaquismo en pacientes con LES.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epigenetics has progressed rapidly from an obscure quirk of heredity into a data-heavy ‘omic’ science. Our understanding of the molecular mechanisms of epigenomic regulation, and the extent of its importance in nature, are far from complete, but in spite of such drawbacks, population-level studies are extremely valuable: epigenomic regulation is involved in several processes central to evolutionary biology including phenotypic plasticity, evolvability and the mediation of intragenomic conflicts. The first studies of epigenomic variation within populations suggest high levels of phenotypically relevant variation, with the patterns of epigenetic regulation varying between individuals and genome regions as well as with environment. Epigenetic mechanisms appear to function primarily as genome defences, but result in the maintenance of plasticity together with a degree of buffering of developmental programmes; periodic breakdown of epigenetic buffering could potentially cause variation in rates of phenotypic evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Environmental cues influence the development of stomata on the leaf epidermis, and allow plants to exert plasticity in leaf stomatal abundance in response to the prevailing growing conditions. It is reported that Arabidopsis thaliana ‘Landsberg erecta’ plants grown under low relative humidity have a reduced stomatal index and that two genes in the stomatal development pathway, SPEECHLESS and FAMA, become de novo cytosine methylated and transcriptionally repressed. These environmentally-induced epigenetic responses were abolished in mutants lacking the capacity for de novo DNA methylation, for the maintenance of CG methylation, and in mutants for the production of short-interfering non-coding RNAs (siRNAs) in the RNA-directed DNA methylation pathway. Induction of methylation was quantitatively related to the induction of local siRNAs under low relative humidity. Our results indicate the involvement of both transcriptional and post-transcriptional gene suppression at these loci in response to environmental stress. Thus, in a physiologically important pathway, a targeted epigenetic response to a specific environmental stress is reported and several of its molecular, mechanistic components are described, providing a tractable platform for future epigenetics experiments. Our findings suggest epigenetic regulation of stomatal development that allows for anatomical and phenotypic plasticity, and may help to explain at least some of the plant’s resilience to fluctuating relative humidity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Gulf is experiencing a pandemic of lifestyle-induced obesity and type 2 diabetes mellitus (T2DM), with rates exceeding 50 and 30%, respectively. It is likely that T2DM represents the tip of a very large metabolic syndrome iceberg, which precedes T2DM by many years and is associated with abnormal/ectopic fat distribution, pathological systemic oxidative stress and inflammation. However, the definitions are still evolving with the role of different fat depots being critical. Hormetic stimuli, which include exercise, calorie restriction, temperature extremes, dehydration and even some dietary components (such as plant polyphenols), may well modulate fat deposition. All induce physiological levels of oxidative stress, which results in mitochondrial biogenesis and increased anti-oxidant capacity, improving metabolic flexibility and the ability to deal with lipids. We propose that the Gulf Metabolic Syndrome results from an unusually rapid loss of hormetic stimuli within an epigenetically important time frame of 2-3 generations. Epigenetics indicates that thriftiness can be programmed by the environment and passed down through several generations. Thus this loss of hormesis can result in continuation of metabolic inflexibility, with mothers exposing the foetus to a milieu that perpetuates a stressed epigenotype. As the metabolic syndrome increases oxidative stress and reduces life expectancy, a better descriptor may therefore be the Lifestyle-Induced Metabolic Inflexibility and accelerated AGEing syndrome – LIMIT-AGE. As life expectancy in the Gulf begins to fall, with perhaps a third of this life being unhealthy – including premature loss of sexual function, it is vital to detect evidence of this condition as early in life as possible. One effective way to do this is by detecting evidence of metabolic inflexibility by studying body fat content and distribution by magnetic resonance (MR). The Gulf Metabolic Syndrome thus represents an accelerated form of the metabolic syndrome induced by the unprecedented rapidity of lifestyle change in the region, the stress of which is being passed from generation to generation and may be accumulative. The fundamental cause is probably due to a rapid increase in countrywide wealth. This has benefited most socioeconomic groups, resulting in the development of an obesogenic environment as the result of the rapid adoption of Western labour saving and stress relieving devices (e.g. cars and air conditioning), as well as the associated high calorie diet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although cloning of mammals has been achieved successfully, the percentage of live offspring is very low because of reduced fetal size and fewer implantation sites. Recent studies have attributed such pathological conditions to abnormal reprogramming of the donor cell used for cloning. The inability of the oocyte to fully restore the differentiated status of a somatic cell to its pluripotent and undifferentiated state is normally evidenced by aberrant DNA methylation patterns established throughout the genome during development to blastocyst. These aberrant methylation patterns are associated with abnormal expression of imprinted genes, which among other genes are essential for normal embryo development and gestation. We hypothesized that embryo loss and low implantation rates in cattle derived by somatic cell nuclear transfer (SCNT) are caused by abnormal epigenetic reprogramming of imprinted genes. To verify our hypothesis, we analyzed the parental expression and the differentially methylated domain (DMD) methylation status of the H19 gene. Using a parental-specific analysis, we confirmed for the first time that H19 biallelic expression is tightly associated with a severe demethylation of the paternal H19 DMD in SCNT embryos, suggesting that these epigenetic anomalies to the H19 locus could be directly responsible for the reduced size and low implantation rates of cloned embryos in cattle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adult mammalian brain contains self-renewable, multipotent neural stem cells (NSCs) that are responsible for neurogenesis and plasticity in specific regions of the adult brain. Extracellular matrix, vasculature, glial cells, and other neurons are components of the niche where NSCs are located. This surrounding environment is the source of extrinsic signals that instruct NSCs to either self-renew or differentiate. Additionally, factors such as the intracellular epigenetics state and retrotransposition events can influence the decision of NSC`s fate into neurons or glia. Extrinsic and intrinsic factors form an intricate signaling network, which is not completely understood. These factors altogether reflect a few of the key players characterized so far in the new field of NSC research and are covered in this review. (C) 2010 John Wiley & Sons, Inc. WIREs Syst Biol Med 2011 3 107-114 DOI:10.1002/wsbm:100

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although regulation of CXCR3 and CCR4 is related to Th1 and Th2 differentiation, respectively, many CXCR3(+) and CCR4(+) cells do not express IFN-gamma and/or IL-4, suggesting that the chemokine receptor genes might be inducible by mechanisms that are lineage-independent. We investigated the regulation of CXCR3 versus IFNG, and CCR4 versus IL4 in human CD4(+) T cells by analyzing modifications of histone H3. In naive cord-blood cells, under nonpolarizing conditions not inducing IL4, CCR4 was induced to high levels without many of the activation-associated changes in promoter histone H3 found for both IL4 and CCR4 in Th2 cells. Importantly, CCR4 expression was stable in Th2 cells, but fell in nonpolarized cells after the cells were rested; this decline could be reversed by increasing histone acetylation using sodium butyrate. Patterns of histone H3 modifications in CXCR3(+) CCR4(-) and CXCR3(-) CCR4(+) CD4(+) T-cell subsets from adult blood matched those in cells cultured under polarizing conditions in vitro. Our data show that high-level lineage-independent induction of CCR4 can occur following T-cell activation without accessibility-associated changes in histone H3, but that without such changes expression is transient rather than persistent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Panic disorder can serve as a clinical model for testing whether mental stress can cause heart disease. Potential neural mechanisms of cardiac risk are the sympathetic activation during panic attacks, continuing release of adrenaline as a co-transmitter in the cardiac sympathetic nerves, and impairment of noradrenaline neuronal reuptake, augmenting sympathetic neural respnses.

The phenotype of impaired neuronal reuptake of noradrenaline: an epigenetic mechanism? We suspect that this phenotype, in sensitizing people to heart symptom development, is a cause of panic disorder, and by magnifying the sympathetic neural signal in the heart, underlies increased cardiac risk. No loss of function mutations of the coding region of the norepinephrine transporter (NET) are evident, but we do detect hypermethylation of CpG islands in the NET gene promoter region. Chromatin immunoprecipitation methodology demonstrates binding of the inhibitory transcription factor, MeCP2, to promoter region DNA in panic disorder patients.

Cardiovascular illnesses co-morbid with panic disorder. Panic disorder commonly coexists with essential hypertension and the postural tachycardia syndrome. In both of these cardiovascular disorders the impaired neuronal noradrenaline reuptake phenotype is also present and, as with panic disorder, is associated with NET gene promoter region DNA hypermethylation. An epigenetic ‘co-morbidity’ perhaps underlies the clinical concordance.

Brain neurotransmitters. Using internal jugular venous sampling, in the absence of a panic attack we find normal norepinephrine turnover, but based on measurements of the overflow of the serotonin metabolite, 5HIAA, a marked increase (six to sevenfold) in brain serotonin turnover in patients with panic disorder. This appears to represent the underlying neurotransmitter substrate for the disorder. Whether this brain serotonergic activation is a prime mover, or consequential on other primary causes of panic disorder, including cardiac sensitization by faulty neuronal noradrenaline reuptake leading to cardiac symptoms and the enhanced vigilance which accompanies them, is unclear at present.

Relevância:

10.00% 10.00%

Publicador: