119 resultados para ellipsometry


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de doutoramento, Química (Química Física), Universidade de Lisboa, Faculdade de Ciências, 2016

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho de projecto de mestrado, Engenharia da Energia e Ambiente, Universidade de Lisboa, Faculdade de Ciências, 2016

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Errata notice inserted in the book.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An experimental and theoretical study of the impact behaviour of charged microparticles in a high voltage vacuum gap has been carried out to investigate under controlled conditions the role of low velocity microparticles (ζ 500 ms-1) in initiating electrical breakdown in such gaps. This has involved developing a unique (UHV) low-velocity source of micron-sized charged particles to study the underlying mechanical and electrical aspects of micro-particle impact on a range of target materials e.g. Pb, Ti, C, stainless-steel and mica etc., having atomically clean or oxidised surfaces. Argon-ion etching and electron-beam heating has been used for in-situ surface treatment and ellipsometry for characterising the target surfaces. An associated sphere/plane theoretical model has been developed for detailed analysis of the many complex electrical (in-flight in-field emission, M.I.M. tunnelling and ohmic conduction) and mechanical (impact dynamics, deformation and heating) phenomena that are involved when a microparticle closely approaches and impacts on a plane target. In each instance the influence of parameters such as particle radius, particle/target impact velocity, surface field, surface condition and material has been determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bearings in the air motors of modern jet aircraft engines must operate dry in hostile conditions at temperatures up to 500° C, where the thrust races in the actuators operate at temperatures up to 300° C. One of the few metallurgical combinations which can function efficiently under these conditions is martensitic stainless steel on tungsten carbide. The work described was initiated to isolate the wear mechanisms of two such steels in contact with tungsten carbide at temperatures up to 500° C. Experiments were carried out on angular contact bearings similar to these used in service, where both rolling and sliding is present and also for pure sliding conditions using a pin-on-disc apparatus. Wear measurements of the bearings were obtained with wear rates, friction and surface temperatures from the pin-on-disc machine for a series of loads and speeds. Extensive X-ray diffraction analysis was carried out on the wear debris, with also S.E.M. analysis and hardness tests on the worn surfaces along with profilometry measurements of the disc. The oxidational parameters of the steel were obtained from measurements of oxide growth rates by ellipsometry. Three distinct mechanisms of wear were established and the latter two were found to be present in both configurations. These involve an oxidational-abrasive mechanism at loads below 40 N with pin surface temperatures up to about 300 °C, with the mechanism changing to severe wear for higher loads. As the temperature increases a third wear mechanism appears due to transfer of relatively soft oxide films to the steel surface reducing the wear rate. Theoretical K factors were derived and compared with experimental values which were found to be in good agreement for the severe wear mechanism. The pin-on-disc experiments may be useful as a screening test for material selection, without the considerable cost of producing the angular contact bearings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Progress in making pH-responsive polyelectrolyte brushes with a range of different grafting densities is reported. Polymer brushes of poly(2-(diethylamino)ethyl methacrylate) were synthesised via atom transfer radical polymerisation on silicon wafers using a 'grafted from' approach. The [11-(2-bromo-2-methyl) propionyloxy]undecyl trichlorosilane initiator was covalently attached to the silicon via silylation, from which the brushes were grown using a catalytic system of copper(I) chloride and pentamethyldiethylenetriamine in tetrahydrofuran at 80°C. X-ray reflectivity was used to assess the initiator surfaces and an upper limit on the grafting density of the polymer was determined. The quality of the brushes produced was analysed using ellipsometry and atomic force microscopy, which is also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrocopolymerization of carbazole and acrylamide on highly oriented pyrolytic graphite (HOPG) from ACN solutions via cyclovoltammetry (CV) was studied in order to evaluate the possibility to deposit uniform and thin but pinhole-free and still reactive coatings onto graphite-like substrates. The morphology of the coatings was investigated using atomic force microscopy and the coating thicknesses and optical parameters were measured using ellipsometry. It was found that under the chosen conditions thin (coating thickness hf>180 nm) and relatively smooth (root mean square surface roughness RMS<150 nm) P(Cz-co-AAm)-coatings exhibiting a uniform globuoidal morphology can be deposited onto graphite. From a certain coating thickness (hf>50 nm) no pinholes could be detected. It was found that the thickness of the deposited coatings increases almost linearly with increasing number of CV-cycles while keeping all other experimental parameters (scan rate and comonomer concentration ratio) constant. No influence of the comonomer concentration ratio on the film thickness and coating appearance could be observed, however, at quite low initial concentrations. However, the CV-scanning rate has quite a significant influence on the thickness of the deposited coatings. Higher scan rates (100 mV/s) result in thin (hf≈22 nm) coatings whereas at lower scan rates (<50 mV/s) coatings with thicknesses of approximately 50 nm were obtained. The optical coating parameters (the refractive index n and extinction coefficient k) seem to be independent of the deposition parameters and therefore averaged values of n̄=1.54±0.03 and k̄=0.08±0.03 were obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1972 the ionized cluster beam (ICB) deposition technique was introduced as a new method for thin film deposition. At that time the use of clusters was postulated to be able to enhance film nucleation and adatom surface mobility, resulting in high quality films. Although a few researchers reported singly ionized clusters containing 10$\sp2$-10$\sp3$ atoms, others were unable to repeat their work. The consensus now is that film effects in the early investigations were due to self-ion bombardment rather than clusters. Subsequently in recent work (early 1992) synthesis of large clusters of zinc without the use of a carrier gas was demonstrated by Gspann and repeated in our laboratory. Clusters resulted from very significant changes in two source parameters. Crucible pressure was increased from the earlier 2 Torr to several thousand Torr and a converging-diverging nozzle 18 mm long and 0.4 mm in diameter at the throat was used in place of the 1 mm x 1 mm nozzle used in the early work. While this is practical for zinc and other high vapor pressure materials it remains impractical for many materials of industrial interest such as gold, silver, and aluminum. The work presented here describes results using gold and silver at pressures of around 1 and 50 Torr in order to study the effect of the pressure and nozzle shape. Significant numbers of large clusters were not detected. Deposited films were studied by atomic force microscopy (AFM) for roughness analysis, and X-ray diffraction.^ Nanometer size islands of zinc deposited on flat silicon substrates by ICB were also studied by atomic force microscopy and the number of atoms/cm$\sp2$ was calculated and compared to data from Rutherford backscattering spectrometry (RBS). To improve the agreement between data from AFM and RBS, convolution and deconvolution algorithms were implemented to study and simulate the interaction between tip and sample in atomic force microscopy. The deconvolution algorithm takes into account the physical volume occupied by the tip resulting in an image that is a more accurate representation of the surface.^ One method increasingly used to study the deposited films both during the growth process and following, is ellipsometry. Ellipsometry is a surface analytical technique used to determine the optical properties and thickness of thin films. In situ measurements can be made through the windows of a deposition chamber. A method for determining the optical properties of a film, that is sensitive only to the growing film and accommodates underlying interfacial layers, multiple unknown underlayers, and other unknown substrates was developed. This method is carried out by making an initial ellipsometry measurement well past the real interface and by defining a virtual interface in the vicinity of this measurement. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The early stages of nanoporous layer formation, under anodic conditions in the absence of light, were investigated for n-type InP with a carrier concentration of ∼3× 1018 cm-3 in 5 mol dm-3 KOH and a mechanism for the process is proposed. At potentials less than ∼0.35 V, spectroscopic ellipsometry and transmission electron microscopy (TEM) showed a thin oxide film on the surface. Atomic force microscopy (AFM) of electrode surfaces showed no pitting below ∼0.35 V but clearly showed etch pit formation in the range 0.4-0.53 V. The density of surface pits increased with time in both linear potential sweep and constant potential reaching a constant value at a time corresponding approximately to the current peak in linear sweep voltammograms and current-time curves at constant potential. TEM clearly showed individual nanoporous domains separated from the surface by a dense ∼40 nm InP layer. It is concluded that each domain develops as a result of directionally preferential pore propagation from an individual surface pit which forms a channel through this near-surface layer. As they grow larger, domains meet, and the merging of multiple domains eventually leads to a continuous nanoporous sub-surface region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The anodic behavior of InP in 1 mol dm-3 KOH was investigated and compared with its behavior at higher concentrations of KOH. At concentrations of 2 mol dm-3 KOH or greater, selective etching of InP occurs leading to thick porous InP layers near the surface of the sustrate. In contrast, in 1 mol dm-3 KOH, no such porous layers are formed but a thin surface film is formed at potentials in the range 0.6 V to 1.3 V. The thickness of this film was determined by spectroscopic ellipsometry as a function of the upper potential and the measured film thickness corresponds to the charge passed up to a potential of 1.0 V. Anodization to potentials above 1.5 V in 1 mol dm- 3 KOH results in the growth of thick, porous oxide films (~ 1.2 µm). These films are observed to crack, ex-situ, due to shrinkage after drying in ambient air. Comparisons between the charge density and film thickness measurements indicate a porosity of approximately 77% for such films.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work I study the optical properties of helical particles and chiral sculptured thin films, using computational modeling (discrete dipole approximation, Berreman calculus), and experimental techniques (glancing angle deposition, ellipsometry, scatterometry, and non-linear optical measurements). The first part of this work focuses on linear optics, namely light scattering from helical microparticles. I study the influence of structural parameters and orientation on the optical properties of particles: circular dichroism (CD) and optical rotation (OR), and show that as a consequence of random orientation, CD and OR can have the opposite sign, compared to that of the oriented particle, potentially resulting in ambiguity of measurement interpretation. Additionally, particles in random orientation scatter light with circular and elliptical polarization states, which implies that in order to study multiple scattering from randomly oriented chiral particles, the polarization state of light cannot be disregarded. To perform experiments and attempt to produce particles, a newly constructed multi stage thin film coating chamber is calibrated. It enables the simultaneous fabrication of multiple sculptured thin film coatings, each with different structure. With it I successfully produce helical thin film coatings with Ti and TiO_{2}. The second part of this work focuses on non-linear optics, with special emphasis on second-harmonic generation. The scientific literature shows extensive experimental and theoretical work on second harmonic generation from chiral thin films. Such films are expected to always show this non-linear effect, due to their lack of inversion symmetry. However no experimental studies report non-linear response of chiral sculptured thin films. In this work I grow films suitable for a second harmonic generation experiment, and report the first measurements of non-linear response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water treatment using photocatalysis has gained extensive attention in recent years. Photocatalysis is promising technology from green chemistry point of view. The most widely studied and used photocatalyst for decomposition of pollutants in water under ultraviolet irradiation is TiO2 because it is not toxic, relatively cheap and highly active in various reactions. Within this thesis unmodified and modified TiO2 materials (powders and thin films) were prepared. Physico-chemical properties of photocatalytic materials were characterized with UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectrometry (XPS), inductively coupled plasma optical emission spectroscopy (ICP-OES), ellipsometry, time-of-flight secondary ion mass spectrometry (ToF-SIMS), Raman spectroscopy, goniometry, diffuse reflectance measurements, thermogravimetric analysis (TGA) and nitrogen adsorption/desorption. Photocatalytic activity of prepared samples in aqueous environment was tested using model compounds such as phenol, formic acid and metazachlor. Also purification of real pulp and paper wastewater effluent was studied. Concentration of chosen pollutants was measured with high pressure liquid chromatography (HPLC). Mineralization and oxidation of organic contaminants were monitored with total organic carbon (TOC) and chemical oxygen demand (COD) analysis. Titanium dioxide powders prepared via sol-gel method and doped with dysprosium and praseodymium were photocatalytically active for decomposition of metazachlor. The highest degradation rate of metazachlor was observed when Pr-TiO2 treated at 450ºC (8h) was used. The photocatalytic LED-based treatment of wastewater effluent from plywood mill using commercially available TiO2 was demonstrated to be promising post-treatment method (72% of COD and 60% of TOC was decreased after 60 min of irradiation). The TiO2 coatings prepared by atomic layer deposition technique on aluminium foam were photocatalytically active for degradation of formic and phenol, however suppression of activity was observed. Photocatalytic activity of TiO2/SiO2 films doped with gold bipyramid-like nanoparticles was about two times higher than reference, which was not the case when gold nanospheres were used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A basic requirement of a plasma etching process is fidelity of the patterned organic materials. In photolithography, a He plasma pretreatment (PPT) based on high ultraviolet and vacuum ultraviolet (UV/VUV) exposure was shown to be successful for roughness reduction of 193nm photoresist (PR). Typical multilayer masks consist of many other organic masking materials in addition to 193nm PR. These materials vary significantly in UV/VUV sensitivity and show, therefore, a different response to the He PPT. A delamination of the nanometer-thin, ion-induced dense amorphous carbon (DAC) layer was observed. Extensive He PPT exposure produces volatile species through UV/VUV induced scissioning. These species are trapped underneath the DAC layer in a subsequent plasma etch (PE), causing a loss of adhesion. Next to stabilizing organic materials, the major goals of this work included to establish and evaluate a cyclic fluorocarbon (FC) based approach for atomic layer etching (ALE) of SiO2 and Si; to characterize the mechanisms involved; and to evaluate the impact of processing parameters. Periodic, short precursor injections allow precise deposition of thin FC films. These films limit the amount of available chemical etchant during subsequent low energy, plasma-based Ar+ ion bombardment, resulting in strongly time-dependent etch rates. In situ ellipsometry showcased the self-limited etching. X-ray photoelectron spectroscopy (XPS) confirms FC film deposition and mixing with the substrate. The cyclic ALE approach is also able to precisely etch Si substrates. A reduced time-dependent etching is seen for Si, likely based on a lower physical sputtering energy threshold. A fluorinated, oxidized surface layer is present during ALE of Si and greatly influences the etch behavior. A reaction of the precursor with the fluorinated substrate upon precursor injection was observed and characterized. The cyclic ALE approach is transferred to a manufacturing scale reactor at IBM Research. Ensuring the transferability to industrial device patterning is crucial for the application of ALE. In addition to device patterning, the cyclic ALE process is employed for oxide removal from Si and SiGe surfaces with the goal of minimal substrate damage and surface residues. The ALE process developed for SiO2 and Si etching did not remove native oxide at the level required. Optimizing the process enabled strong O removal from the surface. Subsequent 90% H2/Ar plasma allow for removal of C and F residues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanium nitride films were grown on glass using the Cathodic Cage Plasma Deposition technique in order to verify the influence of process parameters in optical and structural properties of the films. The plasma atmosphere used was a mixture of Ar, N2 and H2, setting the Ar and N2 gas flows at 4 and 3 sccm, respectively and H2 gas flow varied from 0, 1 to 2 sccm. The deposition process was monitored by Optical Emission Spectroscopy (OES) to investigate the influence of the active species in plasma. It was observed that increasing the H2 gas flow into the plasma the luminescent intensities associated to the species changed. In this case, the luminescence of N2 (391,4nm) species was not proportional to the increasing of the H2 gas into the reactor. Other parameters investigated were diameter and number of holes in the cage. The analysis by Grazing Incidence X-Ray Diffraction (GIXRD) confirmed that the obtained films are composed by TiN and they may have variations in the nitrogen amount into the crystal and in the crystallite size. The optical microscopy images provided information about the homogeneity of the films. The atomic force microscopy (AFM) results revealed some microstructural characteristics and surface roughness. The thickness was measured by ellipsometry. The optical properties such as transmittance and reflectance (they were measured by spectrophotometry) are very sensitive to changes in the crystal lattice of the material, chemical composition and film thicknesses. Therefore, such properties are appropriate tools for verification of this process control. In general, films obtained at 0 sccm of H2 gas flow present a higher transmittance. It can be attributed to the smaller crystalline size due to a higher amount of nitrogen in the TiN lattice. The films obtained at 1 and 2 sccm of H2 gas flow have a golden appearance and XRD pattern showed peaks characteristics of TiN with higher intensity and smaller FWHM (Full Width at Half Maximum) parameter. It suggests that the hydrogen presence in the plasma makes the films more stoichiometric and becomes it more crystalline. It was observed that with higher number of holes in the lid of the cage, close to the region between the lid and the sample and the smaller diameter of the hole, the deposited film is thicker, which is justified by the most probability of plasma species reach effectively the sample and it promotes the growth of the film