962 resultados para electron-transfer dissociation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the anodic oxidation of several arenes and anthracenes within room-temperature ionic liquids (RTILs). In particular, the heterogeneous electron-transfer rates (k(0)) for substituted anthracenes and arenes are also investigated in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C(2)mim][NTf2]) and found not to obey the outer-sphere Marcus-type behavior of these compounds in contrast to the behavior in traditional organic solvents,in particular the predictions for k(0) with molecular size and solvent static dielectric constant. To obtain the electron-transfer rate for 9-phenylanthracene, the dimerization and heterogeneous electron-transfer kinetics of its electrogenerated radical cations is studied in [C(2)mim][NTf2] and eight other RTILs and are both found to be largely independent of the solution viscosity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anthracene-based, H+-driven, ‘off–on–off’ fluorescent PET (photoinduced electron transfer) switches are immobilized on organic and inorganic polymeric solids in the form of Tentagel® and silica, respectively. The environment of the organic bead displaces apparent switching thresholds towards lower pH values whereas the Si–O- groups of silica electrostatically cause the opposite effect. These switches are ternary logic gate tags, one of which can be particularly useful in strengthening molecular computational identification (MCID) of small solid objects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The novel ligand 4'-diferrocenylallcyne-2,2':6',2 ''-terpyridine (7; Fc-C C-Fc-tpy; tpy = terpyridyl; Fc = ferrocenyl) and its Ru2+ complexes 8-10 have been synthesized and characterized by single-crystal X-ray diffraction, cyclic voltammetry, and UV-vis and luminescence spectroscopy. Electrochemical data and UV absorption and emission spectra indicate that the insertion of an ethynyl group causes delocalization of electrons in the extended pi* orbitals. Cyclic voltammetric measurements of 7 show two successive reversible one-electron-oxidation processes with half-wave potentials of 0.53 and 0.78 V. The small variations of the E-1/2 values for the Fe2+/Fe3+ redox couples after the coordination of the Ru2+ ion suggest a weak interaction between the Ru2+ and Fe2+ centers. After insertion of an ethynyl group, UV-vis absorption spectra show a red shift of the absorption peak of the (1)[(d(pi)(Fe))(6)]->(1)[(d(pi)(Fe))(5)(pi*(Ru)(tpy))(1)] MMLCT of the Ru2+ complexes. The Ru2+ complex 8 exhibits the strongest luminescence intensity (lambda(em)(max) 712 nm, Phi(em) = 2.63 x 10(-4), tau = 323 ns) relative to analogous ferrocene-based terpyridine Ru(II) complexes in H2O/CH3CN (4/1 v/v) solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The review provides insight into the mechanism of ligand substitution and electron transfer (from chromium(III) to iron(III)) by comparison of the reactivity of some tetraazamacrocyclic chromium(III) complexes in the conjugate acid-base forms. Use of two geometrical isomers made possible to estimate the influence of geometry and protolytic reactions in trans and cis position towards the leaving group on the rate enhancement. Studies on the reaction rates in different media demonstrated the role played by outer sphere interactions in a monodentate ligand substitution. (C) 2009 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The classic, non-photochemical blue bottle experiment involves the reaction of methylene blue (MB) with deprotonated glucose, to form a bleached form of the dye, leuco-methylene blue (LMB), and subsequent colour recovery by shaking with air. This reaction is a popular demonstrator of key principles in kinetics and reaction mechanisms. Here it is modified so as to highlight features of homogenous and heterogeneous photoinduced electron transfer (PET) (Pure Appl. Chem., 2007, 79, 293-465) reactions, i.e. blue bottle light experiments. The homogeneous blue bottle light experiment uses methylene blue, MB, as the photo-sensitizer and triethanolamine as the sacrificial electron donor. Visible light irradiation of this system leads to its rapid bleaching, followed by the ready restoration of its original colour upon shaking away from the light source. The heterogeneous blue bottle light experiment uses titania as the photo-sensitizer, MB as a redox indicator and glucose as the sacrificial electron donor. UVA light irradiation of this system leads to the rapid bleaching of the MB and the gradual restoration of its original colour with shaking and standing. The latter 'dark' step can be made facile and more demonstrator-friendly by using platinised titania particles. These two photochemical versions of the blue bottle experiment are used to explore the factors which underpin homogeneous and heterogeneous PET reactions and provide useful demonstrations of homogeneous and heterogeneous photochemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetics of the recovery of the photoinduced transient bleaching of colloidal CdS in the presence of different electron acceptors are examined. In the presence of the zwitterionic viologen, N,N'-dipropyl-2,2'-bipyridinium disulphonate, excitation of colloidal CdS at different flash intensities generates a series of decay profiles which are superimposed when normalized. The shape of the decay curves are as predicted by a first-order activation-controlled model for a log-normal distribution of particles sizes. In contrast, the variation in flash intensity in the presence of a second viologen, N,N'-dipropyl-4,4'-bipyridinium sulphonate, generates normalized decay traces which broaden with increasing flash intensity. This behaviour is predicted by a zero-order diffusion-controlled model for a log-normal distribution of particle radii. The photoreduction of a number of other oxidants sensitized by colloidal CdS is examined and the shape of the decay kinetics interpreted via either the first- or zero-order kinetics models. The rate constants and activation energies derived using these models are consistent with the values expected for an activation- or diffusion-controlled reaction.