994 resultados para electron emission measurements


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Traffic emissions are considered as a major source of pollutants, particularly ultrafine particles, in the urban environment. There is an increased concern about airborne particles not only because of their environmental effects but also due to their potential adverse health effects on humans. There have been a number of studies related to the number concentration and size distribution of these particles but studies on the chemical composition of aerosols, especially in the school environment, are very limited. Mejia et. al (2011) reviewed studies on the exposure to and impact of air pollutants on school children and found that there were only a handful of studies on this topic. Therefore, the main focus of this research is on an analysis of the chemical composition of airborne particles, as well as source apportionment and the quantification of ambient concentrations of organic pollutants in the vicinity of schools, as a part of “Ultrafine Particles from Traffic Emissions on Children’s Health” (UPTECH) project. The aim of the present study was to find out the concentrations of different Volatile Organic Compounds (VOCs) in both outdoor and indoor locations from six different schools in Brisbane.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Graphene grown on metal catalysts with low carbon solubility is a highly competitive alternative to exfoliated and other forms of graphene, yet a single-layer, single-crystal structure remains a challenge because of the large number of randomly oriented nuclei that form grain boundaries when stitched together. A kinetic model of graphene nucleation and growth is developed to elucidate the effective controls of the graphene island density and surface coverage from the onset of nucleation to the full monolayer formation in low-pressure, low-temperature CVD. The model unprecedentedly involves the complete cycle of the elementary gas-phase and surface processes and shows a precise quantitative agreement with the recent low-energy electron diffraction measurements and also explains numerous parameter trends from a host of experimental reports. These agreements are demonstrated for a broad pressure range as well as different combinations of precursor gases and supporting catalysts. The critical role of hydrogen in controlling the graphene nucleation and monolayer formation is revealed and quantified. The model is generic and can be extended to even broader ranges of catalysts and precursor gases/pressures to enable the as yet elusive effective control of the crystalline structure and number of layers of graphene using the minimum amounts of matter and energy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report the catalyst-free synthesis of the arrays of core–shell, ultrathin, size-uniform SiC/AlSiC nanowires on the top of a periodic anodic aluminum oxide template. The nanowires were grown using an environmentally friendly, silane-free process by exposing the silicon supported porous alumina template to CH4 + H2 plasmas. High-resolution scanning and transmission electron microscopy studies revealed that the nanowires have a single-crystalline core with a diameter of about 10 nm and a thin (1–2 nm) amorphous AlSiC shell. Because of their remarkable length, high aspect ratio, and very high surface area-to-volume ratio, these unique structures are promising for nanoelectronic and nanophotonic applications that require efficient electron emission, light scattering, etc. A mechanism for nanowire growth is proposed based upon the reduction of the alumina template to nanosized metallic aluminum droplets forming between nanopores. The subsequent incorporation of silicon and carbon atoms from the plasma leads to nucleation and growth from the top of the alumina template.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Particle emission measurements from a fleet of 14 CNG and 5 Diesel buses were measured both for transient and steady state mode s on a chassis dynamometer with a CVS dilution system. Several transient DT80 cycles and 4 steady sate modes (0, 25, 50 100% of maximum load) were measured for each bus tested. Particle number concentration data was collected by three CPC’s (TSI 3022, 3010 3782WCPC) having D50 cut-offs set to 5, 10 and 20nm respectively. The size distributions were measured with a TSI 3080 SMPS with a 3025 CPC during the steady state modes. Particle mass emissions were measured with a TSI Dustrak. Particle mass emissions for Diesel buses were upto 2 orders of magnitude higher than for CNG buses. Particle number emissions during steady state modes for Diesel busses were 2 to 5 times higher than for CNG busses for all of the tested loads. On the other hand for the DT80 transient cycle particle number emissions were up to 3 times higher for the CNG buses. More detailed analysis of the transient cycles revealed that the reason for this was due to high particle number emissions from CNG busses during the acceleration parts of the cycles. Particles emitted by the CNG busses during acceleration were in the nucleation mode with the majority being smaller than 10nm. Volatility measurements have also shown that they were highly volatile.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The tensile stress–strain response and fracture in a hypereutectic Ti–6Al–4V–1.7B (weight percent) alloy were investigated by employing interrupted tensile tests combined with acoustic emission measurements, with the aim to identify the cause for the observed low ductility in this alloy. These tests were complemented with microscopy. The alloy contains TiB whiskers of different length scales, the majority of which include micro-whiskers ( 5–10 μm length) and a few primary-whiskers ( 200–300 μm length). Although the fracture of both types of whiskers occur during deformation, the former leads to a gradual decrease in the secant modulus whereas initiation of the latter leads to a drastic drop in the modulus along with failure of the specimen, limiting the ductility.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

THE electron emission in the cathode spot of arcs has remained an unexplained phenomenon since K. T. Compton1 first directed attention to it. It appears that the arc discharge discovered by H. von Bertele 2 puts this paradox into an even more acute form.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract. Peat surface CO2 emission, groundwater table depth and peat temperature were monitored for two years along transects in an Acacia plantation on thick tropical peat (>4 m) in Sumatra, Indonesia. A total of 2300 emission measurements were taken at 144 locations. The autotrophic root respiration component of the CO2 emission was separated from heterotrophic emissions caused by peat oxidation in three ways: (i) by comparing CO2 emissions within and beyond the tree rooting zone, (ii) by comparing CO2 emissions with and without peat trenching (i.e. cutting any roots remaining in the peat beyond the tree rooting zone), and (iii) by comparing CO2 emissions before and after Acacia tree harvesting. On average, the contribution of root respiration to daytime CO2 emission is 21 % along transects in mature tree stands. At locations 0.5 m from trees this is up to 80 % of the total emissions, but it is negligible at locations more than 1.3 m away. This means that CO2 emission measurements well away from trees are free of any root respiration contribution and thus represent only peat oxidation emission. We find daytime mean annual CO2 emission from peat oxidation alone of 94 t ha−1 yr−1 at a mean water table depth of 0.8 m, and a minimum emission value of 80 t ha−1 yr−1 after correction for the effect of diurnal temperature fluctuations, which resulted in a 14.5 % reduction of the daytime emission. There is a positive correlation between mean long-term water table depths and peat oxidation CO2 emission. However, no such relation is found for instantaneous emission/water table depth within transects and it is clear that factors other than water table depth also affect peat oxidation and total CO2 emissions. The increase in the temperature of the surface peat due to plantation development may explain over 50 % of peat oxidation emissions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Structural Health Monitoring has gained wide acceptance in the recent past as a means to monitor a structure and provide an early warning of an unsafe condition using real-time data. Utilization of structurally integrated, distributed sensors to monitor the health of a structure through accurate interpretation of sensor signals and real-time data processing can greatly reduce the inspection burden. The rapid improvement of the Fiber Optic Sensor technology for strain, vibration, ultrasonic and acoustic emission measurements in recent times makes it feasible alternative to the traditional strain gauges, PVDF and conventional Piezoelectric sensors used for Non Destructive Evaluation (NDE) and Structural Health Monitoring (SHM). Optical fiber-based sensors offer advantages over conventional strain gauges, and PZT devices in terms of size, ease of embedment, immunity from electromagnetic interference (EMI) and potential for multiplexing a number of sensors. The objective of this paper is to demonstrate the acoustic wave sensing using Extrinsic Fabry-Perot Interferometric (EFPI) sensor on a GFRP composite laminates. For this purpose experiments have been carried out initially for strain measurement with Fiber Optic Sensors on GFRP laminates with intentionally introduced holes of different sizes as defects. The results obtained from these experiments are presented in this paper. Numerical modeling has been carried out to obtain the relationship between the defect size and strain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The term Structural Health Monitoring has gained wide acceptance in the recent pastas a means to monitor a structure and provide an early warning of an unsafe conditionusing real-time data. Utilization of structurally integrated, distributed sensors tomonitor the health of a structure through accurate interpretation of sensor signals andreal-time data processing can greatly reduce the inspection burden. The rapidimprovement of the Fiber Bragg Grating sensor technology for strain, vibration andacoustic emission measurements in recent times make them a feasible alternatives tothe traditional strain gauges transducers and conventional Piezoelectric sensors usedfor Non Destructive Evaluation (NDE) and Structural Health Monitoring (SHM).Optical fiber-based sensors offers advantages over conventional strain gauges, PVDFfilm and PZT devices in terms of size, ease of embedment, immunity fromelectromagnetic interference(EMI) and potential for multiplexing a number ofsensors. The objective of this paper is to demonstrate the feasibility of Fiber BraggGrating sensor and compare its utility with the conventional strain gauges and PVDFfilm sensors. For this purpose experiments are being carried out in the laboratory on acomposite wing of a mini air vehicle (MAV). In this paper, the results obtained fromthese preliminary experiments are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The n-type GaN layers were grown by plasma-assisted MBE and either intentionally doped with Si or unintentionally doped. The optical characteristics of a donor level in Si-doped, GaN were studied in terms of photoluminescence (PL) spectroscopy as a function of electron concentration. Temperature dependent PL measurements allowed us to estimate the activation energy of a Si-related donor from temperature-induced decay of PL intensity. PL peak positions, full width at half maximum of PL and activation energies are found to be proportional to the cube root of carrier density. The involvement of donor levels is supported by the temperature-dependent electron concentration measurements. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Extensively studied Mn-doped semiconductor nanocrystals have invariably exhibited photoluminescence over a narrow energy window of width <= 150 meV in the orange-red region and a surprisingly large spectral width (>= 180 meV), contrary to its presumed atomic-like origin. Carrying out emission measurements on individual single nanocrystals and supported by ab initio calculations, we show that Mn PL emission, in fact, can (i) vary over a much wider range (similar to 370 meV) covering the deep green-deep red region and (ii) exhibit widths substantially lower (similar to 60-75 meV) than reported so far, opening newer application possibilities and requiring a fundamental shift in our perception of the emission from Mn-doped semiconductor nanocrystals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The authors report the growth of carbon nanowalls in freestanding, three-dimensional aggregates by microwave plasma-enhanced chemical vapor deposition. Carbon nanowalls extrude from plasma sites into three-dimensional space. The growth is catalyst-free and not limited by nucleating surfaces. The growth mechanism is discussed and compared with similar carbon nanomaterials. High surface area of as-grown carbon nanowalls indicates a potential for electrochemical applications. Field emission measurements show a low field turn-on and long-term stability. The results establish a scalable production method and possible applications using field emission or high surface area. © 2007 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ability to grow carbon nanotubes/nanofibres (CNs) with a high degree of uniformity is desirable in many applications. In this paper, the structural uniformity of CNs produced by plasma enhanced chemical vapour deposition is evaluated for field emission applications. When single isolated CNs were deposited using this technology, the structures exhibited remarkable uniformity in terms of diameter and height (standard deviations were 4.1 and 6.3% respectively of the average diameter and height). The lithographic conditions to achieve a high yield of single CNs are also discussed. Using the height and diameter uniformity statistics, we show that it is indeed possible to accurately predict the average field enhancement factor and the distribution of enhancement factors of the structures, which was confirmed by electrical emission measurements on individual CNs in an array.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report on the fabrication of lateral emitters using carbon nanotubes (CNTs) grown via plasma enhanced chemical vapour deposition (PECVD). Carbon nanotubes are dispersed randomly onto a substrate, mapped, contacted with metal, and by etching the substrate, a suspended lateral emitter structure is formed. Field emission measurements from the lateral emitters show a turn-on voltage as low as 12 V. The emission characteristics showed good fits to the Fowler-Nordheim (FN) theory indicating that conventional field emission was indeed observed from these devices. © 2003 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the plasma processing of ultrafine particles of material, the heat transfer and force are considerably affected by particle charging. In this communication a new model, including thermal electron emission and incorporating the effect of electric field near the particle surface, is developed for metallic spherical particles under the condition of a thin plasma sheath. Based on this model, the particle floating potential, and thus the heat transfer and force, can be detemined more accurately and more realistically than previously.