839 resultados para ecosystem based management
Resumo:
This dataset contains raster grids in GeoTIFF format describing the benthic environment of South Georgia. The data include topographic layers that are directly calculated from a bathymetry grid (Slope, Aspect, Roughness, Slope, Terrain Ruggedness Index, Topographic Position Index). A benthic classification of the area is included, based on topographic layers. Also included are sea-bed environmental layers that are interpolated from global three dimensional grids (Alkalinity, Apparent Oxygen Utilisation, Omega Aragonite, Omega Calcite, Dissolved Oxygen, Nitrate, pH, Phosphate, Salinity, Silicate, Temperature, and Total CO2). These layers were used to construct a habitat suitability model for Octocorallia. The geographic extent is 43°57'56.65"W - 33°45'38.19"W and 52°47'29.50"S - 56° 9'11.03"S. The spatial resolution is 150m x 150m (except for benthic classification wihch is 450m x 450m). The map projection is EPSG:3762.
Resumo:
This dataset consists of global raster maps indicating the habitat suitability for 7 suborders of cold water octocorals (Octocorallia found deeper than 50m). Maps present a relative habitat suitability index ranging from 0 (unsuitable) to 100 (highly suitable). Two maps are provided for each suborder (Alcyoniina, Calcaxonia, Holaxonia, Scleraxonia, Sessiliflorae, Stolonifera, and Subselliflorae). A publicly accessable low resolution map (grid size 10x10 arc-minutes) and a restricted access high resolution map (grid size 30x30 arc-seconds). Maps are geotiff format incorporating LZW compression to reduce file size. Please contact the corresponding author (Chris Yesson) for access to the high resolution data.
Resumo:
The first record of Antipathella subpinnata ( Ellis and Solander, 1786) for the Azores archipelago is presented based on bottom longline by-catch analysis and ROV seafloor surveys, extending the species western-most boundary of distribution in the NE Atlantic. The species was determined using classic taxonomy and molecular analysis targeting nuclear DNA. Although maximum spine height on Azorean colonies branchlets is slightly smaller than that reported from Mediterranean colonies (0.12 vs 0.16 mm), the analysis of partial 18S rDNA, complete ITS1, 5.8S, ITS2 and partial 28S rDNA suggests that the Azorean and Mediterranean specimens belong to the same species. Video surveys of an A. subpinnata garden detected near Pico Island are used to provide the first in situ description of the species habitat in the region and the first detailed description of a black coral garden in the NE Atlantic. With A. subpinnata being the only coral found between 150 and 196 m depths, this is the deepest black coral garden recorded in the NE Atlantic and the first one to be monospecific. The species exhibited a maximum density of 2.64 colonies/m**2 and occurred across a surface area estimated at 67,333 m**2, yielding a local population estimate of 50,500 colonies.
Resumo:
Antipatharia are a diverse group of corals with many species found in deep water. Many Antipatharia are habitat for associates, have extreme longevity and some species can occur beyond 8500 m depth. As they are major constituents of 'coral gardens', which are Vulnerable Marine Ecosystems (VMEs), knowledge of their distribution and environmental requirements is an important pre-requisite for informed conservation planning particularly where the expense and difficulty of deep-sea sampling prohibits comprehensive surveys. This study uses a global database of Antipatharia distribution data to perform habitat suitability modelling using the Maxent methodology to estimate the global extent of black coral habitat suitability. The model of habitat suitability is driven by temperature but there is notable influence from other variables of topography, surface productivity and oxygen levels. This model can be used to predict areas of suitable habitat, which can be useful for conservation planning. The global distribution of Antipatharia habitat suitability shows a marked contrast with the distribution of specimen observations, indicating that many potentially suitable areas have not been sampled, and that sampling effort has been disproportionate to shallow, accessible areas inside marine protected areas (MPAs). Although 25% of Antipatharia observations are located in MPAs, only 7-8% of predicted suitable habitat is protected, which is short of the Convention on Biological Diversity target to protect 10% of ocean habitats by 2020.