920 resultados para eco-retrofitting
Resumo:
O Sistema Base para Eco-certificação de Atividades Rurais (Eco-cert.Rural PROCISUR) consiste de um conjunto de planilhas eletrônicas que integram vinte e quatro indicadores do desempenho de uma dada atividade rural, no âmbito de um estabelecimento. Sete aspectos essenciais de avaliação são considerados: i. Uso de Insumos e Recursos, ii. Qualidade Ambiental, iii. Respeito ao Consumidor, iv. Emprego, v. Renda, vi. Saúde e vii. Gestão e Administração. Os indicadores foram construídos em matrizes de ponderação nas quais dados obtidos em campo, de acordo com o conhecimento do produtor/administrador do estabelecimento, são automaticamente transformados em índices de impacto expressos graficamente. Os resultados da avaliação permitem, ao produtor/administrador, averiguar quais práticas de manejo produzem maior impacto no desempenho de sua atividade e, aos tomadores de decisões, gestores e organizações, a definição de políticas e instrumentos para melhoria de desempenho das atividades rurais, bem como a implantação de um sistema de benchmarking para a identificação de empreendimentos com melhor desempenho ambiental e determinação de estudo de caso afinados com os planos de desenvolvimento local sustentável.
Resumo:
Ecological concern prompts poor and indigenous people of India to consider how a society can ensure both protection of nature and their rightful claim for a just and sustainable future. Previous discussions defended the environment while ignoring the struggles of the poor for sustenance and their religious traditions and ethical values. Mohandas Karamchand Gandhi addressed similar socio-ecological concerns by adopting and adapting traditional religious and ethical notions to develop strategies for constructive, engaged resistance. The dissertation research and analysis verifies the continued relevance of the Gandhian understanding of dharma (ethics) in contemporary India as a basis for developing eco-dharma (eco-ethics) to link closely development, ecology, and religious values. The method of this study is interpretive, analytical, and critical. Françoise Houtart’s social analytical method is used to make visible and to suggest how to overcome social tensions from the perspective of marginalized and exploited peoples in India. The Indian government's development initiatives create a nexus between the eco-crisis and economic injustice, and communities’ responses. The Chipko movement seeks to protect the Himalayan forests from commercial logging. The Narmada Bachao Andolan strives to preserve the Narmada River and its forests and communities, where dam construction causes displacement. The use of Gandhian approaches by these movements provides a framework for integrating ecological concerns with people's struggles for survival. For Gandhi, dharma is a harmony of satya (truth), ahimsa (nonviolence), and sarvodaya (welfare of all). Eco-dharma is an integral, communitarian, and ecologically sensitive ethical paradigm. The study demonstrates that the Gandhian notion of dharma, implemented through nonviolent satyagraha (firmness in promoting truth), can direct community action that promotes responsible economic structures and the well-being of the biotic community and the environment. Eco-dharma calls for solidarity, constructive resistance, and ecologically and economically viable communities. The dissertation recommends that for a sustainable future, India must combine indigenous, appropriate, and small- or medium-scale industries as an alternative model of development in order to help reduce systemic poverty while enhancing ecological well-being.
Resumo:
A set of 13 US based experts in post-combustion and oxy-fuel combustion CO2 capture systems responded to an extensive questionnaire asking their views on the present status and future expected performance and costs for amine-based, chilled ammonia, and oxy-combustion retrofits of coal-fired power plants. This paper presents the experts' responses for technology maturity, ideal plant characteristics for early adopters, and the extent to which R&D and deployment incentives will impact costs. It also presents the best estimates and 95% confidence limits of the energy penalties associated with amine-based systems. The results show a general consensus that amine-based systems are closer to commercial application, but potential for improving performance and lowering costs is limited; chilled ammonia and oxy-combustion offer greater potential for cost reductions, but not without greater uncertainty regarding scale and technical feasibility. © 2011 Elsevier Ltd.
Resumo:
Ecosystems are being altered on a global scale by the extirpation of top predators. The ecological effects of predator removal have been investigated widely; however, predator removal can also change natural selection acting on prey, resulting in contemporary evolution. Here we tested the role of predator removal on the contemporary evolution of trophic traits in prey. We utilized a historical introduction experiment where Trinidadian guppies (Poecilia reticulata) were relocated from a site with predatory fishes to a site lacking predators. To assess the trophic consequences of predator release, we linked individual morphology (cranial, jaw, and body) to foraging performance. Our results show that predator release caused an increase in guppy density and a "sharpening" of guppy trophic traits, which enhanced food consumption rates. Predator release appears to have shifted natural selection away from predator escape ability and towards resource acquisition ability. Related diet and mesocosm studies suggest that this shift enhances the impact of guppies on lower trophic levels in a fashion nuanced by the omnivorous feeding ecology of the species. We conclude that extirpation of top predators may commonly select for enhanced feeding performance in prey, with important cascading consequences for communities and ecosystems.
Resumo:
Interactions between natural selection and environmental change are well recognized and sit at the core of ecology and evolutionary biology. Reciprocal interactions between ecology and evolution, eco-evolutionary feedbacks, are less well studied, even though they may be critical for understanding the evolution of biological diversity, the structure of communities and the function of ecosystems. Eco-evolutionary feedbacks require that populations alter their environment (niche construction) and that those changes in the environment feed back to influence the subsequent evolution of the population. There is strong evidence that organisms influence their environment through predation, nutrient excretion and habitat modification, and that populations evolve in response to changes in their environment at time-scales congruent with ecological change (contemporary evolution). Here, we outline how the niche construction and contemporary evolution interact to alter the direction of evolution and the structure and function of communities and ecosystems. We then present five empirical systems that highlight important characteristics of eco-evolutionary feedbacks: rotifer-algae chemostats; alewife-zooplankton interactions in lakes; guppy life-history evolution and nutrient cycling in streams; avian seed predators and plants; and tree leaf chemistry and soil processes. The alewife-zooplankton system provides the most complete evidence for eco-evolutionary feedbacks, but other systems highlight the potential for eco-evolutionary feedbacks in a wide variety of natural systems.
Resumo:
Gemstone Team HEAT (Human Energy Acquisition Technology)
Resumo:
Evolution occurring over contemporary time scales can have important effects on populations, communities, and ecosystems. Recent studies show that the magnitude of these effects can be large and can generate feedbacks that further shape evolution.
Resumo:
This paper discusses an optimisation based decision support system and methodology for electronic packaging and product design and development which is capable of addressing in efficient manner specified environmental, reliability and cost requirements. A study which focuses on the design of a flip-chip package is presented. Different alternatives for the design of the flip-chip package are considered based on existing options for the applied underfill and volume of solder material used to form the interconnects. Variations in these design input parameters have simultaneous effect on package aspects such as cost, environmental impact and reliability. A decision system for the design of the flip-chip that uses numerical optimisation approach is used to identify the package optimal specification which satisfies the imposed requirements. The reliability aspect of interest is the fatigue of solder joints under thermal cycling. Transient nonlinear finite element analysis (FEA) is used to simulate the thermal fatigue damage in solder joints subject to thermal cycling. Simulation results are manipulated within design of experiments and response surface modelling framework to provide numerical model for reliability which can be used to quantify the package reliability. Assessment of the environmental impact of the package materials is performed by using so called Toxic Index (TI). In this paper we demonstrate the evaluation of the environmental impact only for underfill and lead-free solder materials. This evaluation is based on the amount of material per flip-chip package. Cost is the dominant factor in contemporary flip-chip packaging industry. In the optimisation based decision support system for the design of the flip-chip package, cost of materials which varies as a result of variations in the design parameters is considered.
Resumo:
Mechanistic models such as those based on dynamic energy budget (DEB) theory are emergent ecomechanics tools to investigate the extent of fitness in organisms through changes in life history traits as explained by bioenergetic principles. The rapid growth in interest around this approach originates from the mechanistic characteristics of DEB, which are based on a number of rules dictating the use of mass and energy flow through organisms. One apparent bottleneck in DEB applications comes from the estimations of DEB parameters which are based on mathematical and statistical methods (covariation method). The parameterisation process begins with the knowledge of some functional traits of a target organism (e. g. embryo, sexual maturity and ultimate body size, feeding and assimilation rates, maintenance costs), identified from the literature or laboratory experiments. However, considering the prominent role of the mechanistic approach in ecology, the reduction of possible uncertainties is an important objective. We propose a revaluation of the laboratory procedures commonly used in ecological studies to estimate DEB parameters in marine bivalves. Our experimental organism was Brachidontes pharaonis. We supported our proposal with a validation exercise which compared life history traits as obtained by DEBs (implemented with parameters obtained using classical laboratory methods) with the actual set of species traits obtained in the field. Correspondence between the 2 approaches was very high (>95%) with respect to estimating both size and fitness. Our results demonstrate a good agreement between field data and model output for the effect of temperature and food density on age-size curve, maximum body size and total gamete production per life span. The mechanistic approach is a promising method of providing accurate predictions in a world that is under in creasing anthropogenic pressure.