281 resultados para dystrophy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Duchenne muscular dystrophy (DMD) is an X chromosome-linked disease characterized by progressive physical disability, immobility, and premature death in affected boys. Underlying the devastating symptoms of DMD is the loss of dystrophin, a structural protein that connects the extracellular matrix to the cell cytoskeleton and provides protection against contraction-induced damage in muscle cells, leading to chronic peripheral inflammation. However, dystrophin is also expressed in neurons within specific brain regions, including the hippocampus, a structure associated with learning and memory formation. Linked to this, a subset of boys with DMD exhibit nonprogressing cognitive dysfunction, with deficits in verbal, short-term, and working memory. Furthermore, in the genetically comparable dystrophin-deficient mdx mouse model of DMD, some, but not all, types of learning and memory are deficient, and specific deficits in synaptogenesis and channel clustering at synapses has been noted. Little consideration has been devoted to the cognitive deficits associated with DMD compared with the research conducted into the peripheral effects of dystrophin deficiency. Therefore, this review focuses on what is known about the role of full-length dystrophin (Dp427) in hippocampal neurons. The importance of dystrophin in learning and memory is assessed, and the potential importance that inflammatory mediators, which are chronically elevated in dystrophinopathies, may have on hippocampal function is also evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the protocol for a review and there is no abstract. The objectives are as follows: To assess the effects of standing devices and orthoses on musculoskeletal impairments (such as pain, contracture, scoliosis development and bone density) in people with DMD, and secondarily to determine their effect on quality of life, participation in activities, and patient experience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Duchenne muscular dystrophy (DMD) is a neuromuscular disease caused by mutations in the dystrophin gene. DMD is clinically characterized by severe, progressive and irreversible loss of muscle function, in which most patients lose the ability to walk by their early teens and die by their early 20’s. Impaired intracellular calcium (Ca2+) regulation and activation of cell degradation pathways have been proposed as key contributors to DMD disease progression. This dissertation research consists of three studies investigating the role of intracellular Ca2+ in skeletal muscle dysfunction in different mouse models of DMD. Study one evaluated the role of Ca2+-activated enzymes (proteases) that activate protein degradation in excitation-contraction (E-C) coupling failure following repeated contractions in mdx and dystrophin-utrophin null (mdx/utr-/-) mice. Single muscle fibers from mdx/utr-/- mice had greater E-C coupling failure following repeated contractions compared to fibers from mdx mice. Moreover, protease inhibition during these contractions was sufficient to attenuate E-C coupling failure in muscle fibers from both mdx and mdx/utr-/- mice. Study two evaluated the effects of overexpressing the Ca2+ buffering protein sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 1 (SERCA1) in skeletal muscles from mdx and mdx/utr-/- mice. Overall, SERCA1 overexpression decreased muscle damage and protected the muscle from contraction-induced injury in mdx and mdx/utr-/- mice. In study three, the cellular mechanisms underlying the beneficial effects of SERCA1 overexpression in mdx and mdx/utr-/- mice were investigated. SERCA1 overexpression attenuated calpain activation in mdx muscle only, while partially attenuating the degradation of the calpain target desmin in mdx/utr-/- mice. Additionally, SERCA1 overexpression decreased the SERCA-inhibitory protein sarcolipin in mdx muscle but did not alter levels of Ca2+ regulatory proteins (parvalbumin and calsequestrin) in either dystrophic model. Lastly, SERCA1 overexpression blunted the increase in endoplasmic reticulum stress markers Grp78/BiP in mdx mice and C/EBP homologous protein (CHOP) in mdx and mdx/utr-/- mice. Overall, findings from the studies presented in this dissertation provide new insight into the role of Ca2+ in muscle dysfunction and damage in different dystrophic mouse models. Further, these findings support the overall strategy for improving intracellular Ca2+ control for the development of novel therapies for DMD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infantile Neuroaxonal Dystrophy (INAD1, MIM # 256600), is a rare autossomal recessive neurodegenerative disorder. The clinical picture is characterized by psychomotor regression and hypotonia, which progresses to spastic tetraplegia, visual impairment and dementia. Onset is within the first 2 years of life and death usually happens before the age of 10. In 2006, Morgan et al described that mutations in PLA2G6 gene localized in chromosome 22 (22q13), caused INAD1. Evidence showed that a large proportion of patients with infantile neuroaxonal dystrophy have a mutation in the PLA2G6 gene. A 36-years-old pregnant woman presented for obstetric follow up. It was the second pregnancy of this healthy, nonconsanguineous couple. Their 7 year-old daughter was affected with Infantile Neuroaxonal Dystrophy. Molecular testing was done in the child and, as a causal mutation was detected, it was possible to offer a specific prenatal diagnosis. The molecular study of PLA2G6 gene by amniocentesis showed the presence of a mutation in heterozygoty and the karyotype was normal for a female foetus. To our knowledge, this is the first molecular prenatal diagnosis of INAD1 in Portugal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heart failure is a complex disorder, characterized by activation of the sympathetic nervous system, leading to dysregulated Ca2+ homeostasis in cardiac myocytes and tissue remodeling. In a variety of diseases, cardiac malfunction is associated with aberrant fluxes of Ca2+ across both the surface membrane and the internal Ca2+ store, the sarcoplasmic reticulum (SR). One prominent hypothesis residues is that in heart failure, the activity of the ryanodine receptor (RyR2) Ca2+ release channel in the SR is increased due to excess phosphorylation and that this contributes to excess SR Ca2+ leak in diastole, reduced SR Ca2+ load and decreased contractility (Huke & Bers, 2008). There is controversy over which serine residues in RyR2 are hyperphosphorylated in animal models of heart failure and whether this is via the CaMKII or the PKA-linked signaling pathway. S2808, S2814 and S2030 in RyR2 have been variously claimed to be hyperphosphorylated. Our aim was to examine the degree of phosphorylation of these residues in RyR2 from failing human hearts. The use of human tissue was approved by the Human Research Ethics Committee, The Prince Charles Hospital, EC28114. Left ventricular tissue samples were obtained from an explanted heart of a patient with endstage heart failure (Emery Dreifuss Muscular Dystrophy with cardiomyopathy) and non-failing tissue was from a patient with cystic fibrosis undergoing heart-lung transplantation with no history of heart disease. SR vesicles were prepared as described by Laver et al. (1995) and examined with SDS-Page and Western Blot. Transferred proteins were probed with antibodies to detect total protein phosphorylation, phosphorylation of RyR2 serine residues S2808, S2814, S2030 and for the key proteins calsequestrin, triadin, junctin and FKBP12.6. To avoid membrane stripping artifact, each membrane was exposed to one phosphorylation-specific antibody and signal densities quantified using Bio-Rad Quantity One software. We found no distinguishable difference between failing and healthy hearts in the protein expression levels of RyR2, triadin, junctin or calsequestrin. We found an expected upregulation of total RyR2 phosphorylation in the failing heart sample, compared to a matched amount of RyR2 (quantified using densiometry) in healthy heart. Probing with antibodies detecting only the phosphorylated form of the specific RyR2 residues showed that the increase in total RyR2 phosphorylation in the failing heart was due to hyperphosphorylation of S2808 and S2814. We found that S2030 phosphorylation levels were unchanged in human heart failure. Interestingly, we found that S2030 has a basal level of phosphorylation in the healthy human heart, different from the absence of basal phosphorylation recently reported in rodent heart (Huke & Bers, 2008). Finally, preliminary results indicate that less FKBP 12.6 is associated with RyR2 in the failing heart, possibly as a consequence of PKA activation. In conclusion, residues S2808 and S2814 are hyperphosphorylated in human heart failure, presumably due to upregulation of the CaMKII and/or PKA signaling pathway as a result of chronic activation of the sympathetic nervous system. Such changes in RyR2 phosphorylation are believed to contribute to the leaky RyR2 phenotype associated with heart failure, which increases the incidence of arrhythmia and contributes to the severely impaired contractile performance of the failing heart. Huke S & Bers DM. (2008). Ryanodine receptor phosphorylation at serine 2030, 2808 and 2814 in rat cardiomyocytes. Biochemical and Biophysical Research Communications 376, 80-85. Laver DR, Roden LD, Ahern GP, Eager KR, Junankar PR & Dulhunty AF. (1995). Cytoplasmic Ca2+ inhibits the ryanodine receptor from cardiac muscle. Journal of Membrane Biology 147, 7-22. Proceedings

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite considerable discussion regarding the virtues of participation in urban spaces, the urban experience of children with disabilities has been largely ignored. This intensive study reported on the everyday experience of urban participation on the part of children with conditions such as cerebral palsy, muscular dystrophy, and juvenile arthritis, contributing new insights into their experience of journeys central to becoming involved in settings such as schools, neighbourhoods and shopping centres. The study identified problems in body – space – context relationships as points of intervention in our urban settings that promise to make a significant difference to their everyday journeys.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Extracorporeal membrane oxygenation (ECMO) is used for severe lung and/or heart failure in intensive care units (ICU). The Prince Charles Hospital (TPCH) has one of the largest ECMO units in Australia. Its use rapidly increased during the H1N1 (“swine flu”) pandemic and an increase in pedal complications resulted. The relationship between ECMO and pedal complications has been described, particularly in children, though no strong data exists. This paper presents a case series of foot complications in patients having received ECMO treatment. Methods We present nine cases of severe foot complications resulting from patients receiving ECMO treatment at TPCH in 2009–2012. Results Case ages ranged from 16 - 58 years and three were male. Six cases had an unremarkable medical history prior to H1N1 or H1N2 infection, one had Cardiomyopathy, one had received a lung transplant, and one had multi-organ failure post-sepsis. Common medications prescribed included vasopressors, antibiotics, and sedatives. All cases showed signs of markedly impaired peripheral perfusion whilst on ECMO and seven developed increasing areas of foot necrosis. Outcomes include two bilateral below knee amputations, two multiple digital amputations, one Reflex Sympathetic Dystrophy Syndrome, three pressure injuries, and three deaths. Conclusion Necrosis of the feet appears to occur more readily in younger people requiring ECMO treatment than others in ICU. The authors are conducting further studies to investigate associations between particular infections, medical history, medications, or machine techniques and severe foot complications. Some of these early results will also be presented at this conference.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This chapter reports on a study that reveals the essence of participation in urban spaces by ten children who live with various physical conditions: Muscular Dystrophy, Cerebral Palsy, and Autoimmune Rheumatic Diseases. These conditions affect muscle and movement differently resulting in diverse ways in which children move through space (personal mobility). The children at the time of the research were 9-12 years of age residing in South-east Queensland, Australia. The approach and methods selected for this study, interpretive phenomenological inquiry and grounded theory, were chosen for their capacity to capture the complexity and multiple interactions of the child’s urban living. The confronting and poignant accounts by children and their families of their experiences produced a new way of understanding the concept of participation, as a ‘journey of becoming involved.’ Their accounts of performing everyday routines (e.g. leaving home, getting in and out of the car, and entering places) in urban spaces (neighbourhood streets, schools, open spaces, shopping centres, and hospitals) revealed differences in the way settings were experienced. These differences were associated with the interplay between the body, space and context. Where interplays were problematic, explicit decisions about children’s involvement were made. These decisions were described in terms of ‘avoid going’, ‘pick and choose’, ‘discontinue’, ‘accept’, or ‘contest.’ What these decisions mean is some spaces are avoided, some journeys are discontinued, and some barriers encountered in journeys are normalised as everyday experiences, i.e. ‘tolerable discrimination’. These actions resulted in experiences of non-participation or partial–tokenistic participation. The key substantive contribution of the research lies in the identification of points in children’s journeys that shape participation experience. These points identify where future interventions in policy, programming and design can be made to make real and sustaining changes to lives of children and their families in geographies crucial to urban living.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Participation is a word frequently espoused in the literature of childhood and urban studies. It has also been made sacrosanct through the Convention on the Rights of the Child and other rights-based policy and programming. Despite this importance, what it means and how it is experienced in the everyday lives of children with diverse abilities is not well understood. This chapter provides insight into the everyday experiences of participation by ten children 9-12 years of age, who have diverse personal mobility from various physical conditions that affect muscle and movement differently, including: Muscular Dystrophy, Cerebral Palsy, and Autoimmune Rheumatic Diseases. The children participants live in the outer suburbs and inner regions of south-east Queensland, Australia. The chapter discusses a new way of understanding and theorising participation as a journey of becoming involved. This knowledge emerged through the children’s body-space-time routines (body ballets) and their descriptions of inhabiting urban space. This chapter also establishes how body-space-context interplays shape the experiences of becoming and being involved in everyday life, as well as the preconceptions of body embed in space which divide and constrain children and families actualisation of full and genuine participation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autoimmune diseases affect 5 % of the population and come in many forms, such as diabetes, rheumatoid arthritis and MS. However, how and why autoimmune diseases arise are not yet fully resolved. In this thesis, the onset of autoimmunity was investigated using both patient samples and a mouse model of autoimmunity. Autoimmune diseases are usually complex, due to a number of different causative genes and environmental factors. However, a few monogenic autoimmune diseases have been described, which are caused by mutations in only one gene per disease. One of such disease is called APECED (autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy) and is enriched in the Finnish population. The causative gene behind APECED is named AIRE from AutoImmune REgulator. How malfunction of just one gene product can cause the multitude of disease components found in APECED is not yet resolved. This thesis sought out to find out more about the functions of AIRE, in order to reveal why APECED and other autoimmune diseases arise and what goes wrong? Usually, immune cells are taught to distinguish between self and non-self during their development. That way, immune cells can fight off bacteria and microbes while leaving the tissues and organs of the host organism itself unharmed. In APECED, the development of immune cells called αβ T cells is incomplete. The cells are not able to fully distinguish between self and non-self. This leads to autodestruction of self tissues and autoimmune disease. One of the achievements of this thesis was the finding that the development of another set of T cells called γδ T cells is not affected by AIRE in mice or in men. Instead, we found that another type of immune cell important in tolerance, called the dendritic cell is defective in APECED patients and is not able to respond to microbial stimulus in a normal fashion. Finally, we studied Aire-deficient mice and found that autoantibodies expressed in the mice were not targeted against the same molecules as those found in APECED patients. This indicates differences in the autoimmune pathology in mice and men. More work is still required before we understand the mechanisms of tolerance and autoimmunity well enough to be able to cure APECED, let alone the more complex autoimmune diseases. Yet altogether, the findings of this thesis work bring us one step closer to finding out why and how APECED and common autoimmune diseases arise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of the immune system is to protect an organism against pathogens while maintaining tolerance against self. T cells are an essential component of the immune system and they develop in the thymus. The AIRE (autoimmune regulator) gene product plays an important role in T cell development, as it promotes expression of peripheral tissue antigens in the thymus. Developing T cells, thymocytes, which recognize self-antigens with high affinity are deleted. However, this deletion process is not perfect and not all autoreactive T cells are destroyed. When the distinction between self and non-self fails, tolerance breaks and the immune system attacks the host s own tissues. This results in autoimmunity. Regulatory T cells contribute to the maintenance of self-tolerance. They can actively suppress the function of autoreactive cells. Several populations of cells with regulatory properties have been described, but the best characterized population is the natural regulatory T cells (Treg cells), which develop in the thymus and express the transcription factor FOXP3. The thymic development of Treg cells in humans is the subject of this thesis. Thymocytes at different developmental stages were analyzed using flow cytometry. The CD4-CD8- double-negative (DN) thymocytes are the earliest T cell precursors in the T cell lineage. My results show that the Treg cell marker FOXP3 is up-regulated already in a subset of these DN thymocytes. FOXP3+ cells were also found among the more mature CD4+CD8+ double-positive (DP) cells and among the CD4+ and CD8+ single-positive (SP) thymocytes. The different developmental stages of the FOXP3+ thymocytes were isolated and their gene expression examined by quantitative PCR. T cell receptor (TCR) repertoire analysis was used to compare these different thymocyte populations. My data show that in humans commitment to the Treg cell lineage is an early event and suggest that the development of Treg cells follows a linear developmental pathway, FOXP3+ DN precursors evolving through the DP stage to become mature CD4+ Treg cells. Most T cells have only one kind of TCR on their cell surface, but a small fraction of cells expresses two different TCRs. My results show that the expression of two different TCRs is enriched among Treg cells. Furthermore, both receptors were capable of transmitting signals when bound by a ligand. By extrapolating flow cytometric data, it was estimated that the majority of peripheral blood Treg cells are indeed dual-specific. The high frequency of dual-specific cells among human Treg cells suggests that dual-specificity has a role in directing these cells to the Treg cell lineage. It is known that both genetic predisposition and environmental factors influence the development of autoimmunity. It is also known that the dysfunction or absence of Treg cells leads to the development of autoimmune manifestations. APECED (autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy) is a rare monogenic autoimmune disease, caused by mutations in the AIRE gene. In the absence of AIRE gene product, deletion of self-specific T cells is presumably disturbed and autoreactive T cells escape to the periphery. I examined whether Treg cells are also affected in APECED. I found that the frequency of FOXP3+ Treg cells and the level of FOXP3 expression were significantly lower in APECED patients than in controls. Additionally, when studied in cell cultures, the suppressive capacity of the patients' Treg cells was impaired. Additionally, repertoire analysis showed that the TCR repertoire of Treg cells was altered. These results suggest that AIRE contributes to the development of Treg cells in humans and the selection of Treg cells is impaired in APECED patients. In conclusion, my thesis elucidates the developmental pathway of Treg cells in humans. The differentiation of Tregs begins early during thymic development and both the cells dual-specificity and AIRE probably affect the final commitment of Treg cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Skeletal muscle cells are highly specialised in order to accomplish their function. During development, the fusion of hundreds of immature myoblasts creates large syncytial myofibres with a highly ordered cytoplasm filled with packed myofibrils. The assembly and organisation of contractile myofibrils must be tightly controlled. Indeed, the number of proteins involved in sarcomere building is impressive, and the role of many of them has only recently begun to be elucidated. Myotilin was originally identified as a high affinity a-actinin binding protein in yeast twohybrid screen. It was then found to interact also with filamin C, actin, ZASP and FATZ-1. Human myotilin is mainly expressed in striated muscle and induces efficient actin bundling in vitro and in cells. Moreover, mutations in myotilin cause different forms of muscle disease, now collectively known as myotilinopathies. In this thesis, consisting of three publications, the work on the mouse orthologue is presented. First, the cloning and molecular characterisation of the mouse myotilin gene showed that human and mouse myotilin share high sequence homology and a similar expression pattern and gene regulation. Functional analysis of the mouse promoter revealed the myogenic factor-binding elements that are required for myotilin gene transcription. Secondly, expression of myotilin was studied during mouse embryogenesis. Surprisingly, myotilin was expressed in a wide array of tissues at some stages of development; its expression pattern became more restricted at perinatal stages and in adult life. Immunostaining of human embryos confirmed broader myotilin expression compared to the sarcomeric marker titin. Finally, in the third article, targeted deletion of myotilin gene in mice revealed that it is not essential for muscle development and function. These data altogether indicate that the mouse can be used as a model for human myotilinopathy and that loss of myotilin does not alter significantly muscle structure and function. Therefore, disease-associated mutant myotilin may act as a dominant myopathic factor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poikkijuovaisen luuranko- ja sydänlihaksen supistumisyksikkö, sarkomeeri, koostuu tarkoin järjestyneistä aktiini- ja myosiinisäikeistä. Rakenne eroaa muista solutyypeistä, joissa aktiinisäikeistö muovautuu jatkuvasti ja sen järjestyminen säätelee solun muotoa, solujakautumista, soluliikettä ja solunsisäisten organellien kuljetusta. Myotilin, palladin ja myopalladin kuuluvat proteiiniperheeseen, jonka yhteispiirteenä ovat immunoglobuliinin kaltaiset (Igl) domeenit. Proteiinit liittyvät aktiinitukirankaan ja niiden arvellaan toimivan solutukirangan rakenne-elementteinä ja säätelijöinä. Myotilinia ja myopalladinia ilmennetään poikkijuovaisessa lihaksessa. Sen sijaan palladinin eri silmukointimuotoja tavataan monissa kudostyypeissä kuten hermostossa, ja eri muodoilla saattaa olla solutyypistä riippuvia tehtäviä. Poikkijuovaisessa lihaksessa kaikki perheen jäsenet sijaitsevat aktiinisäikeitä yhdistävässä Z-levyssä ja ne sitovat Z-levyn rakenneproteiinia, -aktiniinia. Myotilingeenin pistemutaatiot johtavat periytyviin lihastauteihin, kun taas palladinin mutaatioiden on kuvattu liittyvän periytyvään haimasyöpään ja lisääntyneeseen sydäninfarktin riskiin. Tässä tutkimuksessa selvitettin myotilinin ja pallainin toimintaa. Kokeissa löydettiin uusia palladinin 90-92kDa alatyyppiin sitoutuvia proteiineja. Yksi niistä on aktiinidynamiikkaa säätelevä profilin. Profilinilla on kahdenlaisia tehtäviä; se edesauttaa aktiinisäikeiden muodostumista, mutta se voi myös eristää yksittäisiä aktiinimolekyylejä ja edistää säikeiden hajoamista. Solutasolla palladinin ja profilinin sijainti on yhtenevä runsaasti aktiinia sisältävillä solujen reuna-alueilla. Palladinin ja profilinin sidos on heikko ja hyvin dynaaminen, joka sopii palladinin tehtävään aktiinisäideiden muodostumisen koordinoijana. Toinen palladinin sitoutumiskumppani on aktiinisäikeitä yhteensitova -aktiniini. -Aktiniini liittää solutukirangan solukalvon proteiineihin ja ankkuroi solunsisäisiä viestintämolekyylejä. Sitoutumista välittävä alue on hyvin samankaltainen palladinissa ja myotilinissa. Luurankolihaksen liiallinen toistuva venytys muuttaa Z-levyjen rakennetta ja muotoa. Prosessin aikana syntyy uusia aktiinifilamenttejä sisältäviä tiivistymiä ja lopulta uusia sarkomeereja. Löydöstemme perusteella myotilinin uudelleenjärjestyminen noudattaa aktiinin muutoksia. Tämä viittaa siihen, että myotilin liittää yhteen uudismuodostuvia aktiinisäikeitä ja vakauttaa niitä. Myotilin saattaa myös ankkuroida viesti- tai rakennemolekyylejä, joiden tehtävänä on edesauttaa Z-levyjen uudismuodostusta. Tulostemme perusteella arvelemme, että myotilin toimii Z-levyjen rakenteen vakaajana ja aktiinisäikeiden säätelijänä. Palladinin puute johtaa sikiöaikaiseen kuolemaan hiirillä, mutta myotilinin puutoksella ei ole samanlaisia vaikutuksia. Tuotettujen myotilin poistogeenisten hiirten todetiin syntyvän ja kehittyvän normaalisti eikä niillä esiintynyt rakenteellisia tai toiminnallisia häiriöitä. Toisaalta aiemmissa kokeissa, joissa hiirille on siirretty ihmisen lihastautia aikaansaava myotilingeeni, nähdään samankaltaisia kuin sairailla ihmisillä. Näin ollen muuntunut myotilin näyttä olevan lihaksen toiminnalle haitallisempi kuin myotilinin puute. Myotilinin ja palladinin yhteisvaikutusta selvittääksemme risteytimme myotilin poistegeenisen hiiren ja hiirilinjan, joka ilmentää puutteellisesti palladinin 200 kDa muotoa. Puutteellisesti 200 kDa palladinia ilmentävien hiirten sydänlihaksessa todettiin vähäisiä hienorakenteen muutoksia, mutta risteytetyillä hiirillä tavattiin rakenteellisia ja toiminnallisia muutoksia myös luurankolihaksessa. Tulosten perusteella voidaan todeta, että palladinin 200 kDa muoto säätelee sydänlihassolujen rakennetta. Luurankolihaksessa sen sijaan myotilinilla ja palladinilla näyttäisi olevan päällekkäisiä tehtäviä.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carotenoids are associated with various health benefits, such as prevention of age-related macular degeneration, cataract, certain cancers, rheumatoid arthritis, muscular dystrophy and cardiovascular problems. As microalgae contain considerable amounts of carotenoids, there is a need to find species with high carotenoid content. Out of hundreds of Australian isolates, twelve microalgal species were screened for carotenoid profiles, carotenoid productivity, and in vitro antioxidant capacity (total phenolic content (TPC) and ORAC). The top four carotenoid producers at 4.68-6.88 mg/g dry weight (DW) were Dunaliella salina, Tetraselmis suecica, Isochrysis galbana, and Pavlova salina. TPC was low, with D. salina possessing the highest TPC (1.54 mg Gallic Acid Equivalents/g DW) and ORAC (577 μmol Trolox Equivalents/g DW). Results indicate that T. suecica, D. salina, P. salina and I. galbana could be further developed for commercial carotenoid production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autoimmune diseases are a major health problem. Usually autoimmune disorders are multifactorial and their pathogenesis involves a combination of predisposing variations in the genome and other factors such as environmental triggers. APECED (autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy) is a rare, recessively inherited, autoimmune disease caused by mutations in a single gene. Patients with APECED suffer from several organ-specific autoimmune disorders, often affecting the endocrine glands. The defective gene, AIRE, codes for a transcriptional regulator. The AIRE (autoimmune regulator) protein controls the expression of hundreds of genes, representing a substantial subset of tissue-specific antigens which are presented to developing T cells in the thymus and has proven to be a key molecule in the establishment of immunological tolerance. However, the molecular mechanisms by which AIRE mediates its functions are still largely obscure. The aim of this thesis has been to elucidate the functions of AIRE by studying the molecular interactions it is involved in by utilizing different cultured cell models. A potential molecular mechanism for exceptional, dominant, inheritance of APECED in one family, carrying a glycine 228 to tryptophan (G228W) mutation, was described in this thesis. It was shown that the AIRE polypeptide with G228W mutation has a dominant negative effect by binding the wild type AIRE and inhibiting its transactivation capacity in vitro. The data also emphasizes the importance of homomultimerization of AIRE in vivo. Furthermore, two novel protein families interacting with AIRE were identified. The importin alpha molecules regulate the nuclear import of AIRE by binding to the nuclear localization signal of AIRE, delineated as a classical monopartite signal sequence. The interaction of AIRE with PIAS E3 SUMO ligases, indicates a link to the sumoylation pathway, which plays an important role in the regulation of nuclear architecture. It was shown that AIRE is not a target for SUMO modification but enhances the localization of SUMO1 and PIAS1 proteins to nuclear bodies. Additional support for the suggestion that AIRE would preferably up-regulate genes with tissue-specific expression pattern and down-regulate housekeeping genes was obtained from transactivation studies performed with two models: human insulin and cystatin B promoters. Furthermore, AIRE and PIAS activate the insulin promoter concurrently in a transactivation assay, indicating that their interaction is biologically relevant. Identification of novel interaction partners for AIRE provides us information about the molecular pathways involved in the establishment of immunological tolerance and deepens our understanding of the role played by AIRE not only in APECED but possibly also in several other autoimmune diseases.