918 resultados para dynamic factor models
Resumo:
The last decade has shown that the global paper industry needs new processes and products in order to reassert its position in the industry. As the paper markets in Western Europe and North America have stabilized, the competition has tightened. Along with the development of more cost-effective processes and products, new process design methods are also required to break the old molds and create new ideas. This thesis discusses the development of a process design methodology based on simulation and optimization methods. A bi-level optimization problem and a solution procedure for it are formulated and illustrated. Computational models and simulation are used to illustrate the phenomena inside a real process and mathematical optimization is exploited to find out the best process structures and control principles for the process. Dynamic process models are used inside the bi-level optimization problem, which is assumed to be dynamic and multiobjective due to the nature of papermaking processes. The numerical experiments show that the bi-level optimization approach is useful for different kinds of problems related to process design and optimization. Here, the design methodology is applied to a constrained process area of a papermaking line. However, the same methodology is applicable to all types of industrial processes, e.g., the design of biorefiners, because the methodology is totally generalized and can be easily modified.
Resumo:
Dynaamisia simulointimalleja tarvitaan, jotta voidaan tarkastella järjestelmän käyttäytymistä ajan funktiona. Simulointimallilla voidaan simuloida järjestelmän lähtö erilaisilla herätteillä. Mallin avulla saadaan myös tarkempi käsitys järjestelmästä ja sen osa-alueista, koska simulointimallista voidaan tarkastella sellaisia asioita, jotka voivat olla oikeasta järjestelmästä vaikeasti mitattavia. Tässä työssä kehitetään LUT Energian hyötysuhdemittapaikan keskikokoista kalorimetriä approksimoiva dynaaminen lämmönsiirtomalli käyttäen Matlab® Simulink -ohjelmistoa. Kehitetyn lämmönsiirtomallin tarkkuutta arvioidaan todellisella järjestelmällä tehdyillä mittauksilla. Työssä käytetään karkeita approksimaatioita, jotka tulee korvata tarkemmilla matemaattisilla malleilla jatkokehitystä varten. Työssä kehitetty dynaaminen lämmönsiirtomalli approksimoi todellisen järjestelmän vastetta lämmitysvaiheessa keskimääräisenvirheen ±0,19 °C tarkkuudella.
Resumo:
Thesis: A liquid-cooled, direct-drive, permanent-magnet, synchronous generator with helical, double-layer, non-overlapping windings formed from a copper conductor with a coaxial internal coolant conduit offers an excellent combination of attributes to reliably provide economic wind power for the coming generation of wind turbines with power ratings between 5 and 20MW. A generator based on the liquid-cooled architecture proposed here will be reliable and cost effective. Its smaller size and mass will reduce build, transport, and installation costs. Summary: Converting wind energy into electricity and transmitting it to an electrical power grid to supply consumers is a relatively new and rapidly developing method of electricity generation. In the most recent decade, the increase in wind energy’s share of overall energy production has been remarkable. Thousands of land-based and offshore wind turbines have been commissioned around the globe, and thousands more are being planned. The technologies have evolved rapidly and are continuing to evolve, and wind turbine sizes and power ratings are continually increasing. Many of the newer wind turbine designs feature drivetrains based on Direct-Drive, Permanent-Magnet, Synchronous Generators (DD-PMSGs). Being low-speed high-torque machines, the diameters of air-cooled DD-PMSGs become very large to generate higher levels of power. The largest direct-drive wind turbine generator in operation today, rated just below 8MW, is 12m in diameter and approximately 220 tonne. To generate higher powers, traditional DD-PMSGs would need to become extraordinarily large. A 15MW air-cooled direct-drive generator would be of colossal size and tremendous mass and no longer economically viable. One alternative to increasing diameter is instead to increase torque density. In a permanent magnet machine, this is best done by increasing the linear current density of the stator windings. However, greater linear current density results in more Joule heating, and the additional heat cannot be removed practically using a traditional air-cooling approach. Direct liquid cooling is more effective, and when applied directly to the stator windings, higher linear current densities can be sustained leading to substantial increases in torque density. The higher torque density, in turn, makes possible significant reductions in DD-PMSG size. Over the past five years, a multidisciplinary team of researchers has applied a holistic approach to explore the application of liquid cooling to permanent-magnet wind turbine generator design. The approach has considered wind energy markets and the economics of wind power, system reliability, electromagnetic behaviors and design, thermal design and performance, mechanical architecture and behaviors, and the performance modeling of installed wind turbines. This dissertation is based on seven publications that chronicle the work. The primary outcomes are the proposal of a novel generator architecture, a multidisciplinary set of analyses to predict the behaviors, and experimentation to demonstrate some of the key principles and validate the analyses. The proposed generator concept is a direct-drive, surface-magnet, synchronous generator with fractional-slot, duplex-helical, double-layer, non-overlapping windings formed from a copper conductor with a coaxial internal coolant conduit to accommodate liquid coolant flow. The novel liquid-cooling architecture is referred to as LC DD-PMSG. The first of the seven publications summarized in this dissertation discusses the technological and economic benefits and limitations of DD-PMSGs as applied to wind energy. The second publication addresses the long-term reliability of the proposed LC DD-PMSG design. Publication 3 examines the machine’s electromagnetic design, and Publication 4 introduces an optimization tool developed to quickly define basic machine parameters. The static and harmonic behaviors of the stator and rotor wheel structures are the subject of Publication 5. And finally, Publications 6 and 7 examine steady-state and transient thermal behaviors. There have been a number of ancillary concrete outcomes associated with the work including the following. X Intellectual Property (IP) for direct liquid cooling of stator windings via an embedded coaxial coolant conduit, IP for a lightweight wheel structure for lowspeed, high-torque electrical machinery, and IP for numerous other details of the LC DD-PMSG design X Analytical demonstrations of the equivalent reliability of the LC DD-PMSG; validated electromagnetic, thermal, structural, and dynamic prediction models; and an analytical demonstration of the superior partial load efficiency and annual energy output of an LC DD-PMSG design X A set of LC DD-PMSG design guidelines and an analytical tool to establish optimal geometries quickly and early on X Proposed 8 MW LC DD-PMSG concepts for both inner and outer rotor configurations Furthermore, three technologies introduced could be relevant across a broader spectrum of applications. 1) The cost optimization methodology developed as part of this work could be further improved to produce a simple tool to establish base geometries for various electromagnetic machine types. 2) The layered sheet-steel element construction technology used for the LC DD-PMSG stator and rotor wheel structures has potential for a wide range of applications. And finally, 3) the direct liquid-cooling technology could be beneficial in higher speed electromotive applications such as vehicular electric drives.
Resumo:
Diplomityön tavoitteena on esitellä sähkökaupan ja erityisesti sähköyhtiöiden kokemia sähkönmyynnin riskejä sekä kuvata sähkönmyyntiin liittyvää riskienhallinnan problematiikkaa. Tarkastelun näkökulmana on tietojärjestelmien ja saatavissa olevan tiedon hyödyntäminen energiayhtiöiden riskienhallinnassa. Toinen päätavoitteista on tutkia, kuinka saatavilla olevaa tiedon hyödyntämistä voidaan kehittää sähkönmyynnin hinnoittelussa sekä suojausten suunnittelussa. Työ toteutettiin työskentelemällä asiantuntijana energia-alaan keskittyneessä ohjelmistoyrityksessä sekä haastattelemalla yhdeksän suomalaisen sähkönmyyntiyhtiön henkilöitä riskienhallinnan haasteiden sekä tietojärjestelmien näkökulmasta. Saatavilla olevien tietojen nykyistä parempi hyödyntäminen ja automatisointi voivat auttaa pienentämään yhtiöiden riskitasoa ja parantaa menestymisen edellytyksiä sähkönmyynnin vähittäismarkkinoilla. Lisäksi kulloiseenkin markkinatilanteeseen sopivat sähkön hankintahinnan suojausstrategiat sekä monipuoliset dynaamiset hinnoittelumallit auttavat pienentämään yhtiön kokemia riskejä tai niiden vaikutuksia. Näiden hyödyntäminen vaatii laajaa ymmärrystä sähkö- ja johdannaismarkkinoiden toiminnasta sekä usein myös nykyisten tietojärjestelmien kehittämistä. Tulevaisuudessa yhä yleistyvä hajautettu tuotanto sekä kysynnän jousto asettavat tietojärjestelmille uusia vaatimuksia, jotka toteutuessaan mahdollistavat uudenlaisten palveluiden käyttöönoton sekä voivat tuoda tilaa myös alan uusille toimijoille. Työssä käsitellään energiayhtiöiden kokemia riskejä sähkönmyynnin näkökulmasta, esitellään alan yleisimmät riskit sekä keinot ja työkalut niiltä suojautumiseen. Työn lopuksi tarkastellaan sähkönmyynnin ja –hankinnan oleellisimpia prosesseja riskienhallinnan kehittämisen näkökulmasta.
Resumo:
The main objective of the paper is to assess the impact of fiscal variables on private investment comparing some Latin-American economies to other advanced ones. For such purposes, the authors carry out an econometric analysis for the period 1990-2008. They make use of two dynamic panel models in which they group countries with similar characteristics and development levels. In one of them, they include Mexico, Brazil, Chile, Colombia and Uruguay; whereas in the second one the countries accounted for are the U.S., Canada, Spain, Korea, Ireland and Japan. They specify in both models an investment function using as arguments a wide range of variables, including those related with fiscal policy. From their results the authors infer that governments can, with higher spending, boost up the economy even when they finance spending with higher taxes. In Latin America, where income concentration is enormous, a proposal to boost up the economy through higher government expenditure financed with a progressive income tax, is even more justified.
Resumo:
Conditional heteroskedasticity is an important feature of many macroeconomic and financial time series. Standard residual-based bootstrap procedures for dynamic regression models treat the regression error as i.i.d. These procedures are invalid in the presence of conditional heteroskedasticity. We establish the asymptotic validity of three easy-to-implement alternative bootstrap proposals for stationary autoregressive processes with m.d.s. errors subject to possible conditional heteroskedasticity of unknown form. These proposals are the fixed-design wild bootstrap, the recursive-design wild bootstrap and the pairwise bootstrap. In a simulation study all three procedures tend to be more accurate in small samples than the conventional large-sample approximation based on robust standard errors. In contrast, standard residual-based bootstrap methods for models with i.i.d. errors may be very inaccurate if the i.i.d. assumption is violated. We conclude that in many empirical applications the proposed robust bootstrap procedures should routinely replace conventional bootstrap procedures for autoregressions based on the i.i.d. error assumption.
Resumo:
Im Rahmen dieser Arbeit werden Modellbildungsverfahren zur echtzeitfähigen Simulation wichtiger Schadstoffkomponenten im Abgasstrom von Verbrennungsmotoren vorgestellt. Es wird ein ganzheitlicher Entwicklungsablauf dargestellt, dessen einzelne Schritte, beginnend bei der Ver-suchsplanung über die Erstellung einer geeigneten Modellstruktur bis hin zur Modellvalidierung, detailliert beschrieben werden. Diese Methoden werden zur Nachbildung der dynamischen Emissi-onsverläufe relevanter Schadstoffe des Ottomotors angewendet. Die abgeleiteten Emissionsmodelle dienen zusammen mit einer Gesamtmotorsimulation zur Optimierung von Betriebstrategien in Hybridfahrzeugen. Im ersten Abschnitt der Arbeit wird eine systematische Vorgehensweise zur Planung und Erstellung von komplexen, dynamischen und echtzeitfähigen Modellstrukturen aufgezeigt. Es beginnt mit einer physikalisch motivierten Strukturierung, die eine geeignete Unterteilung eines Prozessmodells in einzelne überschaubare Elemente vorsieht. Diese Teilmodelle werden dann, jeweils ausgehend von einem möglichst einfachen nominalen Modellkern, schrittweise erweitert und ermöglichen zum Abschluss eine robuste Nachbildung auch komplexen, dynamischen Verhaltens bei hinreichender Genauigkeit. Da einige Teilmodelle als neuronale Netze realisiert werden, wurde eigens ein Verfah-ren zur sogenannten diskreten evidenten Interpolation (DEI) entwickelt, das beim Training einge-setzt, und bei minimaler Messdatenanzahl ein plausibles, also evidentes Verhalten experimenteller Modelle sicherstellen kann. Zum Abgleich der einzelnen Teilmodelle wurden statistische Versuchs-pläne erstellt, die sowohl mit klassischen DoE-Methoden als auch mittels einer iterativen Versuchs-planung (iDoE ) generiert wurden. Im zweiten Teil der Arbeit werden, nach Ermittlung der wichtigsten Einflussparameter, die Model-strukturen zur Nachbildung dynamischer Emissionsverläufe ausgewählter Abgaskomponenten vor-gestellt, wie unverbrannte Kohlenwasserstoffe (HC), Stickstoffmonoxid (NO) sowie Kohlenmono-xid (CO). Die vorgestellten Simulationsmodelle bilden die Schadstoffkonzentrationen eines Ver-brennungsmotors im Kaltstart sowie in der anschließenden Warmlaufphase in Echtzeit nach. Im Vergleich zur obligatorischen Nachbildung des stationären Verhaltens wird hier auch das dynami-sche Verhalten des Verbrennungsmotors in transienten Betriebsphasen ausreichend korrekt darge-stellt. Eine konsequente Anwendung der im ersten Teil der Arbeit vorgestellten Methodik erlaubt, trotz einer Vielzahl von Prozesseinflussgrößen, auch hier eine hohe Simulationsqualität und Ro-bustheit. Die Modelle der Schadstoffemissionen, eingebettet in das dynamische Gesamtmodell eines Ver-brennungsmotors, werden zur Ableitung einer optimalen Betriebsstrategie im Hybridfahrzeug ein-gesetzt. Zur Lösung solcher Optimierungsaufgaben bieten sich modellbasierte Verfahren in beson-derer Weise an, wobei insbesondere unter Verwendung dynamischer als auch kaltstartfähiger Mo-delle und der damit verbundenen Realitätsnähe eine hohe Ausgabequalität erreicht werden kann.
Resumo:
Contenido Introducción 1. Inteligencia emocional, liderazgo transformacional y género: factores que influencian el desempeño organizacional / Ana María Galindo Londoño, Sara Urrego Mayorga; Director: Juan Carlos Espinosa Méndez. 2. El rol de la mujer en el liderazgo / Andrea Patricia Cuestas Díaz; Directora: Francoise Venezia Contreras Torres. 3. Liderazgo transformacional, clima organizacional, satisfacción laboral y desempeño. Una revisión de la literatura / Juliana Restrepo Orozco, Ángela Marcela Ochoa Rodríguez; Directora: Françoise Venezia Contreras Torres. 4. “E-Leadership” una perspectiva al mundo de las compañías globalizadas / Ángela Beatriz Morales Morales, Mónica Natalia Aguilera Velandia; Director: Juan Carlos Espinosa. 5. Liderazgo y cultura. Una revisión / Daniel Alejandro Romero Galindo; Directora: Francoise Venezia Contreras Torres. 6. La investigación sobre la naturaleza del trabajo directivo: una revisión de la literatura / Julián Felipe Rodríguez Rivera, María Isabel Álvarez Rodríguez; Director: Juan Javier Saavedra Mayorga. 7. La mujer en la alta dirección en el contexto colombiano / Ana María Moreno, Juliana Moreno Jaramillo ; Directora: Françoise Venezia Contreras Torres. 8. Influencia de la personalidad en el discurso y liderazgo de George W. Bush después del 11 de septiembre de 2011 / Karen Eliana Mesa Torres; Director: Juan Carlos Espinosa. 9. La investigación sobre el campo del followership: una revisión de la literatura / Christian D. Báez Millán, Leidy J. Pinzón Porras; Director: Juan Javier Saavedra Mayorga. 10. El liderazgo desde la perspectiva del poder y la influencia. Una revisión de la literatura / Lina María García, Juan Sebastián Naranjo; Director: Juan Javier Saavedra Mayorga. 11. El trabajo directivo para líderes y gerentes: una visión integradora de los roles organizacionales / Lina Marcela Escobar Campos, Daniel Mora Barrero; Director: Rafael Piñeros. 12. Participación emocional en la toma de decisiones / Lina Rocío Poveda C., Gloria Johanna Rueda L.; Directora: Francoise Contreras T. 13. Estrés y su relación con el liderazgo / María Camila García Sierra, Diana Paola Rocha Cárdenas; Director: Juan Carlos Espinosa. 14. “Burnout y engagement” / María Paola Jaramillo Barrios, Natalia Rojas Mancipe; Director: Rafael Piñeros.
Resumo:
In this paper we use the most representative models that exist in the literature on term structure of interest rates. In particular, we explore affine one factor models and polynomial-type approximations such as Nelson and Siegel. Our empirical application considers monthly data of USA and Colombia for estimation and forecasting. We find that affine models do not provide adequate performance either in-sample or out-of-sample. On the contrary, parsimonious models such as Nelson and Siegel have adequate results in-sample, however out-of-sample they are not able to systematically improve upon random walk base forecast.
Resumo:
Seasonal climate prediction offers the potential to anticipate variations in crop production early enough to adjust critical decisions. Until recently, interest in exploiting seasonal forecasts from dynamic climate models (e.g. general circulation models, GCMs) for applications that involve crop simulation models has been hampered by the difference in spatial and temporal scale of GCMs and crop models, and by the dynamic, nonlinear relationship between meteorological variables and crop response. Although GCMs simulate the atmosphere on a sub-daily time step, their coarse spatial resolution and resulting distortion of day-to-day variability limits the use of their daily output. Crop models have used daily GCM output with some success by either calibrating simulated yields or correcting the daily rainfall output of the GCM to approximate the statistical properties of historic observations. Stochastic weather generators are used to disaggregate seasonal forecasts either by adjusting input parameters in a manner that captures the predictable components of climate, or by constraining synthetic weather sequences to match predicted values. Predicting crop yields, simulated with historic weather data, as a statistical function of seasonal climatic predictors, eliminates the need for daily weather data conditioned on the forecast, but must often address poor statistical properties of the crop-climate relationship. Most of the work on using crop simulation with seasonal climate forecasts has employed historic analogs based on categorical ENSO indices. Other methods based on classification of predictors or weather types can provide daily weather inputs to crop models conditioned on forecasts. Advances in climate-based crop forecasting in the coming decade are likely to include more robust evaluation of the methods reviewed here, dynamically embedding crop models within climate models to account for crop influence on regional climate, enhanced use of remote sensing, and research in the emerging area of 'weather within climate'.
Resumo:
Seasonal climate prediction offers the potential to anticipate variations in crop production early enough to adjust critical decisions. Until recently, interest in exploiting seasonal forecasts from dynamic climate models (e.g. general circulation models, GCMs) for applications that involve crop simulation models has been hampered by the difference in spatial and temporal scale of GCMs and crop models, and by the dynamic, nonlinear relationship between meteorological variables and crop response. Although GCMs simulate the atmosphere on a sub-daily time step, their coarse spatial resolution and resulting distortion of day-to-day variability limits the use of their daily output. Crop models have used daily GCM output with some success by either calibrating simulated yields or correcting the daily rainfall output of the GCM to approximate the statistical properties of historic observations. Stochastic weather generators are used to disaggregate seasonal forecasts either by adjusting input parameters in a manner that captures the predictable components of climate, or by constraining synthetic weather sequences to match predicted values. Predicting crop yields, simulated with historic weather data, as a statistical function of seasonal climatic predictors, eliminates the need for daily weather data conditioned on the forecast, but must often address poor statistical properties of the crop-climate relationship. Most of the work on using crop simulation with seasonal climate forecasts has employed historic analogs based on categorical ENSO indices. Other methods based on classification of predictors or weather types can provide daily weather inputs to crop models conditioned on forecasts. Advances in climate-based crop forecasting in the coming decade are likely to include more robust evaluation of the methods reviewed here, dynamically embedding crop models within climate models to account for crop influence on regional climate, enhanced use of remote sensing, and research in the emerging area of 'weather within climate'.
Resumo:
In the past decade, a number of mechanistic, dynamic simulation models of several components of the dairy production system have become available. However their use has been limited due to the detailed technical knowledge and special software required to run them, and the lack of compatibility between models in predicting various metabolic processes in the animal. The first objective of the current study was to integrate the dynamic models of [Brit. J. Nutr. 72 (1994) 679] on rumen function, [J. Anim. Sci. 79 (2001) 1584] on methane production, [J. Anim. Sci. 80 (2002) 2481 on N partition, and a new model of P partition. The second objective was to construct a decision support system to analyse nutrient partition between animal and environment. The integrated model combines key environmental pollutants such as N, P and methane within a nutrient-based feed evaluation system. The model was run under different scenarios and the sensitivity of various parameters analysed. A comparison of predictions from the integrated model with the original simulation models showed an improvement in N excretion since the integrated model uses the dynamic model of [Brit. J. Nutr. 72 (1994) 6791 to predict microbial N, which was not represented in detail in the original model. The integrated model can be used to investigate the degree to which production and environmental objectives are antagonistic, and it may help to explain and understand the complex mechanisms involved at the ruminal and metabolic levels. A part of the integrated model outputs were the forms of N and P in excreta and methane, which can be used as indices of environmental pollution. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
Previous attempts to apply statistical models, which correlate nutrient intake with methane production, have been of limited. value where predictions are obtained for nutrient intakes and diet types outside those. used in model construction. Dynamic mechanistic models have proved more suitable for extrapolation, but they remain computationally expensive and are not applied easily in practical situations. The first objective of this research focused on employing conventional techniques to generate statistical models of methane production appropriate to United Kingdom dairy systems. The second objective was to evaluate these models and a model published previously using both United Kingdom and North American data sets. Thirdly, nonlinear models were considered as alternatives to the conventional linear regressions. The United Kingdom calorimetry data used to construct the linear models also were used to develop the three. nonlinear alternatives that were ball of modified Mitscherlich (monomolecular) form. Of the linear models tested,, an equation from the literature proved most reliable across the full range of evaluation data (root mean square prediction error = 21.3%). However, the Mitscherlich models demonstrated the greatest degree of adaptability across diet types and intake level. The most successful model for simulating the independent data was a modified Mitscherlich equation with the steepness parameter set to represent dietary starch-to-ADF ratio (root mean square prediction error = 20.6%). However, when such data were unavailable, simpler Mitscherlich forms relating dry matter or metabolizable energy intake to methane production remained better alternatives relative to their linear counterparts.
Resumo:
This study examines the relation between corporate social performance and stock returns in the UK. We closely evaluate the interactions between social and financial performance with a set of disaggregated social performance indicators for environment, employment, and community activities instead of using an aggregate measure. While scores on a composite social performance indicator are negatively related to stock returns, we find the poor financial reward offered by such firms is attributable to their good social performance on the environment and, to a lesser extent, the community aspects. Considerable abnormal returns are available from holding a portfolio of the socially least desirable stocks. These relationships between social and financial performance can be rationalized by multi-factor models for explaining the cross-sectional variation in returns, but not by industry effects.
Resumo:
Large-scale bottom-up estimates of terrestrial carbon fluxes, whether based on models or inventory, are highly dependent on the assumed land cover. Most current land cover and land cover change maps are based on satellite data and are likely to be so for the foreseeable future. However, these maps show large differences, both at the class level and when transformed into Plant Functional Types (PFTs), and these can lead to large differences in terrestrial CO2 fluxes estimated by Dynamic Vegetation Models. In this study the Sheffield Dynamic Global Vegetation Model is used. We compare PFT maps and the resulting fluxes arising from the use of widely available moderate (1 km) resolution satellite-derived land cover maps (the Global Land Cover 2000 and several MODIS classification schemes), with fluxes calculated using a reference high (25 m) resolution land cover map specific to Great Britain (the Land Cover Map 2000). We demonstrate that uncertainty is introduced into carbon flux calculations by (1) incorrect or uncertain assignment of land cover classes to PFTs; (2) information loss at coarser resolutions; (3) difficulty in discriminating some vegetation types from satellite data. When averaged over Great Britain, modeled CO2 fluxes derived using the different 1 km resolution maps differ from estimates made using the reference map. The ranges of these differences are 254 gC m−2 a−1 in Gross Primary Production (GPP); 133 gC m−2 a−1 in Net Primary Production (NPP); and 43 gC m−2 a−1 in Net Ecosystem Production (NEP). In GPP this accounts for differences of −15.8% to 8.8%. Results for living biomass exhibit a range of 1109 gC m−2. The types of uncertainties due to land cover confusion are likely to be representative of many parts of the world, especially heterogeneous landscapes such as those found in western Europe.