999 resultados para dynamic decomposition
Resumo:
1. A model of the population dynamics of Banksia ornata was developed, using stochastic dynamic programming (a state-dependent decision-making tool), to determine optimal fire management strategies that incorporate trade-offs between biodiversity conservation and fuel reduction. 2. The modelled population of B. ornata was described by its age and density, and was exposed to the risk of unplanned fires and stochastic variation in germination success. 3. For a given population in each year, three management strategies were considered: (i) lighting a prescribed fire; (ii) controlling the incidence of unplanned fire; (iii) doing nothing. 4. The optimal management strategy depended on the state of the B. ornata population, with the time since the last fire (age of the population) being the most important variable. Lighting a prescribed fire at an age of less than 30 years was only optimal when the density of seedlings after a fire was low (< 100 plants ha(-1)) or when there were benefits of maintaining a low fuel load by using more frequent fire. 5. Because the cost of management was assumed to be negligible (relative to the value of the persistence of the population), the do-nothing option was never the optimal strategy, although lighting prescribed fires had only marginal benefits when the mean interval between unplanned fires was less than 20-30 years.
Resumo:
In recent work, the concentration index has been widely used as a measure of income-related health inequality. The purpose of this note is to illustrate two different methods for decomposing the overall health concentration index using data collected from a Short Form (SF-36) survey of the general Australian population conducted in 1995. For simplicity, we focus on the physical functioning scale of the SF-36. Firstly we examine decomposition 'by component' by separating the concentration index for the physical functioning scale into the ten items on which it is based. The results show that the items contribute differently to the overall inequality measure, i.e. two of the items contributed 13% and 5%, respectively, to the overall measure. Second, to illustrate the 'by subgroup' method we decompose the concentration index by employment status. This involves separating the population into two groups: individuals currently in employment; and individuals not currently employed. We find that the inequality between these groups is about five times greater than the inequality within each group. These methods provide insights into the nature of inequality that can be used to inform policy design to reduce income related health inequalities. Copyright (C) 2002 John Wiley Sons, Ltd.
Resumo:
The objective of he article is to research the dynamic capacities developed and used by WEG in its internationalization process and to explain how these capacities help the company defends and supports competitive advantage. The article presents an exploratory study of the internationalization process of WEG in Argentina and China. This article has as analysis approach the dynamic capacities, contributes to the literature of international management in two aspects. First, it adds the analytical look of the internationalization based on dynamic capacities that are still well restricted. Second, when working the dynamic capacities as central element of the analysis of the internationalization process, it Proposes one framework of integrative analysis of the economic and behavioral theories that are used to explain the process of companies`-internationalization, although they are dealt independently and sometimes antagonistic way. The result shows as the dynamic capacities are articulated in the base of WEG in its process of internationalization for Argentina and the subsequent movement for China. The developed dynamic capacities in Argentina were acquired for the Brazilian headquarter and could have been applied in the process of internationalization for China. However, a more complex organizational structure cannot be identified where the inter-subsidiary relationships could share dynamic capacities as proposed in framework.
Resumo:
This paper develops a multi-regional general equilibrium model for climate policy analysis based on the latest version of the MIT Emissions Prediction and Policy Analysis (EPPA) model. We develop two versions so that we can solve the model either as a fully inter-temporal optimization problem (forward-looking, perfect foresight) or recursively. The standard EPPA model on which these models are based is solved recursively, and it is necessary to simplify some aspects of it to make inter-temporal solution possible. The forward-looking capability allows one to better address economic and policy issues such as borrowing and banking of GHG allowances, efficiency implications of environmental tax recycling, endogenous depletion of fossil resources, international capital flows, and optimal emissions abatement paths among others. To evaluate the solution approaches, we benchmark each version to the same macroeconomic path, and then compare the behavior of the two versions under a climate policy that restricts greenhouse gas emissions. We find that the energy sector and CO(2) price behavior are similar in both versions (in the recursive version of the model we force the inter-temporal theoretical efficiency result that abatement through time should be allocated such that the CO(2) price rises at the interest rate.) The main difference that arises is that the macroeconomic costs are substantially lower in the forward-looking version of the model, since it allows consumption shifting as an additional avenue of adjustment to the policy. On the other hand, the simplifications required for solving the model as an optimization problem, such as dropping the full vintaging of the capital stock and fewer explicit technological options, likely have effects on the results. Moreover, inter-temporal optimization with perfect foresight poorly represents the real economy where agents face high levels of uncertainty that likely lead to higher costs than if they knew the future with certainty. We conclude that while the forward-looking model has value for some problems, the recursive model produces similar behavior in the energy sector and provides greater flexibility in the details of the system that can be represented. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The prevalence of the parasite Aporobopyrus curtatus in Petrolisthes armatus from southern Brazil was determined, and the effect the parasite had on host reproduction was evaluated. Of all 775 crabs sampled in Araca region from March 2005 to July 2006, 3.2% presented bopyrid parasites. All the parasitized individuals had one branchial chamber occupied by two mature parasites, with no preference for the right or left chamber. Male and female hosts were infested in equal proportions. Parasitized juveniles, large individuals and ovigerous females were not found in our study. The absence of parasitized ovigerous females seems to be insufficient evidence to support the hypothesis of parasitic castration and would require a histological study to confirm their reproductive death. The percentage of infestation observed in our study (3.1%) is lower than the one found in other studies and it could indicate the existence of factor(s) regulating the density of A. curtatus in the Araca region. At least in this population, the low but constant presence of the bopyrid A. curtatus population did not appear to have a negative effect on the porcellanid population, and parasitized individuals did not play a significant role in the natural history of P. armatus.
Resumo:
The electrocatalytic activity of Pt and RuO(2) mixed electrodes of different compositions towards methanol oxidation was investigated. The catalysts were prepared by thermal decomposition of polymeric precursors and characterized by energy dispersive X-ray, scanning electronic microscopy, X-ray diffraction and cyclic voltammetry. This preparation method allowed obtaining uniform films with controlled stoichiometry and high surface area. Cyclic voltammetry experiments in the presence of methanol showed that mixed electrodes decreased the potential peak of methanol oxidation by approximately 100 mV (RHE) when compared to the electrode containing only Pt. In addition, voltammetric experiments indicated that the Pt(0.6)Ru(0.4)O(y) electrode led to higher oxidation current densities at lower potentials. Chronoamperometry experiments confirmed the contribution of RuO(2) to the catalytic activity as well as the better performance of the Pt(0.6)Ru(0.4)O(y) electrode composition. Formic acid and CO(2) were identified as being the reaction products formed in the electrolysis performed at 400 and 600 mV. The relative formation of CO(2) was favored in the electrolysis performed at 400 mV (RHE) with the Pt(0.6)Ru(0.4)O(y) electrode. The presence of RuO(2) in Pt-Ru-based electrodes is important for improving the catalytic activity towards methanol electrooxidation. Moreover, the thermal decomposition of polymeric precursors seems to be a promising route for the production of catalysts applicable to DMFC. (C) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
Room-temperature measurements of the magnetic susceptibility of Bovine Serum Albumin-based nanocapsules (50 to 300 nm in size) loaded with different amounts of maghemite nanoparticles (7.6 nm average diameter) have been carried out in this study The field (H) dependence of the imaginary peak susceptibility (f(P)) of the nanocomposite samples was investigated in the range of 0 to 4 kOe. From the analysis of the f(P) x H curves the concentration (N) dependence of the effective maghemite magnetocrystalline energy barrier (E) was obtained. Analysis of the E x N data was performed using a modified Morup-Tronc [Phys. Rev. Lett. 72, 3278 (1994)] model, from which a huge contribution from the magnetocrystalline surface anisotropy was observed.
Resumo:
The experiment examined the influence of memory for prior instances on aircraft conflict detection. Participants saw pairs of similar aircraft repeatedly conflict with each other. Performance improvements suggest that participants credited the conflict status of familiar aircraft pairs to repeated static features such as speed, and dynamic features such as aircraft relative position. Participants missed conflicts when a conflict pair resembled a pair that had repeatedly passed safely. Participants either did not attend to, or interpret, the bearing of aircraft correctly as a result of false memory-based expectations. Implications for instance models and situational awareness in dynamic systems are discussed.
Resumo:
Carbon-supported catalysts containing platinum and molybdenum oxide are prepared by thermal decomposition of polymeric precursors. The Pt(y)Mo(z)O(x)/C materials are characterized by energy dispersive X-ray spectroscopy, transmission electron microscopy, and X-ray diffraction. The catalysts present a well-controlled stoichiometry and nanometric particles. Molybdenum is present mainly as the MoO(3) orthorhombic structure, and no Pt alloys are detected. The voltammetric behavior of the electrodes is investigated; a correlation with literature results for PtMo/C catalysts prepared by other methods is established. The formation of soluble species and the aging effect are discussed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Piezoelectric polymers have been used to form the basis of dynamic strain gauges for the detection of stress waves. The linearity of response was tested using a split Hopkinson pressure bar arrangement. The results obtained illustrate the effectiveness of piezoelectric film strain gauges in the measurement of axial stress waves.
Resumo:
An important consideration in the development of mathematical models for dynamic simulation, is the identification of the appropriate mathematical structure. By building models with an efficient structure which is devoid of redundancy, it is possible to create simple, accurate and functional models. This leads not only to efficient simulation, but to a deeper understanding of the important dynamic relationships within the process. In this paper, a method is proposed for systematic model development for startup and shutdown simulation which is based on the identification of the essential process structure. The key tool in this analysis is the method of nonlinear perturbations for structural identification and model reduction. Starting from a detailed mathematical process description both singular and regular structural perturbations are detected. These techniques are then used to give insight into the system structure and where appropriate to eliminate superfluous model equations or reduce them to other forms. This process retains the ability to interpret the reduced order model in terms of the physico-chemical phenomena. Using this model reduction technique it is possible to attribute observable dynamics to particular unit operations within the process. This relationship then highlights the unit operations which must be accurately modelled in order to develop a robust plant model. The technique generates detailed insight into the dynamic structure of the models providing a basis for system re-design and dynamic analysis. The technique is illustrated on the modelling for an evaporator startup. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
In this second paper, the three structural measures which have been developed are used in the modelling of a three stage centrifugal synthesis gas compressor. The goal of this case study is to determine the essential mathematical structure which must be incorporated into the compressor model to accurately model the shutdown of this system. A simple, accurate and functional model of the system is created via three structural measures. It was found that the model can be correctly reduced into its basic modes and that the order of the differential system can be reduced from 51(st) to 20(th). Of the 31 differential equational 21 reduce to algebraic relations, 8 become constants and 2 can be deleted thereby increasing the algebraic set from 70 to 91 equations. An interpretation is also obtained as to which physical phenomena are dominating the dynamics of the compressor add whether the compressor will enter surge during the shutdown. Comparisons of the reduced model performance against the full model are given, showing the accuracy and applicability of the approach. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
For the purpose of developing a longitudinal model to predict hand-and-foot syndrome (HFS) dynamics in patients receiving capecitabine, data from two large phase III studies were used. Of 595 patients in the capecitabine arms, 400 patients were randomly selected to build the model, and the other 195 were assigned for model validation. A score for risk of developing HFS was modeled using the proportional odds model, a sigmoidal maximum effect model driven by capecitabine accumulation as estimated through a kinetic-pharmacodynamic model and a Markov process. The lower the calculated creatinine clearance value at inclusion, the higher was the risk of HFS. Model validation was performed by visual and statistical predictive checks. The predictive dynamic model of HFS in patients receiving capecitabine allows the prediction of toxicity risk based on cumulative capecitabine dose and previous HFS grade. This dose-toxicity model will be useful in developing Bayesian individual treatment adaptations and may be of use in the clinic.