960 resultados para dynamic causal modeling
Resumo:
PURPOSE: Aerodynamic drag plays an important role in performance for athletes practicing sports that involve high-velocity motions. In giant slalom, the skier is continuously changing his/her body posture, and this affects the energy dissipated in aerodynamic drag. It is therefore important to quantify this energy to understand the dynamic behavior of the skier. The aims of this study were to model the aerodynamic drag of alpine skiers in giant slalom simulated conditions and to apply these models in a field experiment to estimate energy dissipated through aerodynamic drag. METHODS: The aerodynamic characteristics of 15 recreational male and female skiers were measured in a wind tunnel while holding nine different skiing-specific postures. The drag and the frontal area were recorded simultaneously for each posture. Four generalized and two individualized models of the drag coefficient were built, using different sets of parameters. These models were subsequently applied in a field study designed to compare the aerodynamic energy losses between a dynamic and a compact skiing technique. RESULTS: The generalized models estimated aerodynamic drag with an accuracy of between 11.00% and 14.28%, and the individualized models estimated aerodynamic drag with an accuracy between 4.52% and 5.30%. The individualized model used for the field study showed that using a dynamic technique led to 10% more aerodynamic drag energy loss than using a compact technique. DISCUSSION: The individualized models were capable of discriminating different techniques performed by advanced skiers and seemed more accurate than the generalized models. The models presented here offer a simple yet accurate method to estimate the aerodynamic drag acting upon alpine skiers while rapidly moving through the range of positions typical to turning technique.
Identification of optimal structural connectivity using functional connectivity and neural modeling.
Resumo:
The complex network dynamics that arise from the interaction of the brain's structural and functional architectures give rise to mental function. Theoretical models demonstrate that the structure-function relation is maximal when the global network dynamics operate at a critical point of state transition. In the present work, we used a dynamic mean-field neural model to fit empirical structural connectivity (SC) and functional connectivity (FC) data acquired in humans and macaques and developed a new iterative-fitting algorithm to optimize the SC matrix based on the FC matrix. A dramatic improvement of the fitting of the matrices was obtained with the addition of a small number of anatomical links, particularly cross-hemispheric connections, and reweighting of existing connections. We suggest that the notion of a critical working point, where the structure-function interplay is maximal, may provide a new way to link behavior and cognition, and a new perspective to understand recovery of function in clinical conditions.
Resumo:
Abstract : The existence of a causal relationship between the spatial distribution of living organisms and their environment, in particular climate, has been long recognized and is the central principle of biogeography. In turn, this recognition has led scientists to the idea of using the climatic, topographic, edaphic and biotic characteristics of the environment to predict its potential suitability for a given species or biological community. In this thesis, my objective is to contribute to the development of methodological improvements in the field of species distribution modeling. More precisely, the objectives are to propose solutions to overcome limitations of species distribution models when applied to conservation biology issues, or when .used as an assessment tool of the potential impacts of global change. The first objective of my thesis is to contribute to evidence the potential of species distribution models for conservation-related applications. I present a methodology to generate pseudo-absences in order to overcome the frequent lack of reliable absence data. I also demonstrate, both theoretically (simulation-based) and practically (field-based), how species distribution models can be successfully used to model and sample rare species. Overall, the results of this first part of the thesis demonstrate the strong potential of species distribution models as a tool for practical applications in conservation biology. The second objective this thesis is to contribute to improve .projections of potential climate change impacts on species distributions, and in particular for mountain flora. I develop and a dynamic model, MIGCLIM, that allows the implementation of dispersal limitations into classic species distribution models and present an application of this model to two virtual species. Given that accounting for dispersal limitations requires information on seed dispersal, distances, a general methodology to classify species into broad dispersal types is also developed. Finally, the M~GCLIM model is applied to a large number of species in a study area of the western Swiss Alps. Overall, the results indicate that while dispersal limitations can have an important impact on the outcome of future projections of species distributions under climate change scenarios, estimating species threat levels (e.g. species extinction rates) for a mountainous areas of limited size (i.e. regional scale) can also be successfully achieved when considering dispersal as unlimited (i.e. ignoring dispersal limitations, which is easier from a practical point of view). Finally, I present the largest fine scale assessment of potential climate change impacts on mountain vegetation that has been carried-out to date. This assessment involves vegetation from 12 study areas distributed across all major western and central European mountain ranges. The results highlight that some mountain ranges (the Pyrenees and the Austrian Alps) are expected to be more affected by climate change than others (Norway and the Scottish Highlands). The results I obtain in this study also indicate that the threat levels projected by fine scale models are less severe than those derived from coarse scale models. This result suggests that some species could persist in small refugias that are not detected by coarse scale models. Résumé : L'existence d'une relation causale entre la répartition des espèces animales et végétales et leur environnement, en particulier le climat, a été mis en évidence depuis longtemps et est un des principes centraux en biogéographie. Ce lien a naturellement conduit à l'idée d'utiliser les caractéristiques climatiques, topographiques, édaphiques et biotiques de l'environnement afin d'en prédire la qualité pour une espèce ou une communauté. Dans ce travail de thèse, mon objectif est de contribuer au développement d'améliorations méthodologiques dans le domaine de la modélisation de la distribution d'espèces dans le paysage. Plus précisément, les objectifs sont de proposer des solutions afin de surmonter certaines limitations des modèles de distribution d'espèces dans des applications pratiques de biologie de la conservation ou dans leur utilisation pour évaluer l'impact potentiel des changements climatiques sur l'environnement. Le premier objectif majeur de mon travail est de contribuer à démontrer le potentiel des modèles de distribution d'espèces pour des applications pratiques en biologie de la conservation. Je propose une méthode pour générer des pseudo-absences qui permet de surmonter le problème récurent du manque de données d'absences fiables. Je démontre aussi, de manière théorique (par simulation) et pratique (par échantillonnage de terrain), comment les modèles de distribution d'espèces peuvent être utilisés pour modéliser et améliorer l'échantillonnage des espèces rares. Ces résultats démontrent le potentiel des modèles de distribution d'espèces comme outils pour des applications de biologie de la conservation. Le deuxième objectif majeur de ce travail est de contribuer à améliorer les projections d'impacts potentiels des changements climatiques sur la flore, en particulier dans les zones de montagnes. Je développe un modèle dynamique de distribution appelé MigClim qui permet de tenir compte des limitations de dispersion dans les projections futures de distribution potentielle d'espèces, et teste son application sur deux espèces virtuelles. Vu que le fait de prendre en compte les limitations dues à la dispersion demande des données supplémentaires importantes (p.ex. la distance de dispersion des graines), ce travail propose aussi une méthode de classification simplifiée des espèces végétales dans de grands "types de disperseurs", ce qui permet ainsi de d'obtenir de bonnes approximations de distances de dispersions pour un grand nombre d'espèces. Finalement, j'applique aussi le modèle MIGCLIM à un grand nombre d'espèces de plantes dans une zone d'études des pré-Alpes vaudoises. Les résultats montrent que les limitations de dispersion peuvent avoir un impact considérable sur la distribution potentielle d'espèces prédites sous des scénarios de changements climatiques. Cependant, quand les modèles sont utilisés pour évaluer les taux d'extinction d'espèces dans des zones de montages de taille limitée (évaluation régionale), il est aussi possible d'obtenir de bonnes approximations en considérant la dispersion des espèces comme illimitée, ce qui est nettement plus simple d'un point dé vue pratique. Pour terminer je présente la plus grande évaluation à fine échelle d'impact potentiel des changements climatiques sur la flore des montagnes conduite à ce jour. Cette évaluation englobe 12 zones d'études réparties sur toutes les chaines de montages principales d'Europe occidentale et centrale. Les résultats montrent que certaines chaines de montagnes (les Pyrénées et les Alpes Autrichiennes) sont projetées comme plus sensibles aux changements climatiques que d'autres (les Alpes Scandinaves et les Highlands d'Ecosse). Les résultats obtenus montrent aussi que les modèles à échelle fine projettent des impacts de changement climatiques (p. ex. taux d'extinction d'espèces) moins sévères que les modèles à échelle large. Cela laisse supposer que les modèles a échelle fine sont capables de modéliser des micro-niches climatiques non-détectées par les modèles à échelle large.
Resumo:
Lesions of anatomical brain networks result in functional disturbances of brain systems and behavior which depend sensitively, often unpredictably, on the lesion site. The availability of whole-brain maps of structural connections within the human cerebrum and our increased understanding of the physiology and large-scale dynamics of cortical networks allow us to investigate the functional consequences of focal brain lesions in a computational model. We simulate the dynamic effects of lesions placed in different regions of the cerebral cortex by recording changes in the pattern of endogenous ("resting-state") neural activity. We find that lesions produce specific patterns of altered functional connectivity among distant regions of cortex, often affecting both cortical hemispheres. The magnitude of these dynamic effects depends on the lesion location and is partly predicted by structural network properties of the lesion site. In the model, lesions along the cortical midline and in the vicinity of the temporo-parietal junction result in large and widely distributed changes in functional connectivity, while lesions of primary sensory or motor regions remain more localized. The model suggests that dynamic lesion effects can be predicted on the basis of specific network measures of structural brain networks and that these effects may be related to known behavioral and cognitive consequences of brain lesions.
Resumo:
Whereas numerical modeling using finite-element methods (FEM) can provide transient temperature distribution in the component with enough accuracy, it is of the most importance the development of compact dynamic thermal models that can be used for electrothermal simulation. While in most cases single power sources are considered, here we focus on the simultaneous presence of multiple sources. The thermal model will be in the form of a thermal impedance matrix containing the thermal impedance transfer functions between two arbitrary ports. Eachindividual transfer function element ( ) is obtained from the analysis of the thermal temperature transient at node ¿ ¿ after a power step at node ¿ .¿ Different options for multiexponential transient analysis are detailed and compared. Among the options explored, small thermal models can be obtained by constrained nonlinear least squares (NLSQ) methods if the order is selected properly using validation signals. The methods are applied to the extraction of dynamic compact thermal models for a new ultrathin chip stack technology (UTCS).
Resumo:
Because of the increase in workplace automation and the diversification of industrial processes, workplaces have become more and more complex. The classical approaches used to address workplace hazard concerns, such as checklists or sequence models, are, therefore, of limited use in such complex systems. Moreover, because of the multifaceted nature of workplaces, the use of single-oriented methods, such as AEA (man oriented), FMEA (system oriented), or HAZOP (process oriented), is not satisfactory. The use of a dynamic modeling approach in order to allow multiple-oriented analyses may constitute an alternative to overcome this limitation. The qualitative modeling aspects of the MORM (man-machine occupational risk modeling) model are discussed in this article. The model, realized on an object-oriented Petri net tool (CO-OPN), has been developed to simulate and analyze industrial processes in an OH&S perspective. The industrial process is modeled as a set of interconnected subnets (state spaces), which describe its constitutive machines. Process-related factors are introduced, in an explicit way, through machine interconnections and flow properties. While man-machine interactions are modeled as triggering events for the state spaces of the machines, the CREAM cognitive behavior model is used in order to establish the relevant triggering events. In the CO-OPN formalism, the model is expressed as a set of interconnected CO-OPN objects defined over data types expressing the measure attached to the flow of entities transiting through the machines. Constraints on the measures assigned to these entities are used to determine the state changes in each machine. Interconnecting machines implies the composition of such flow and consequently the interconnection of the measure constraints. This is reflected by the construction of constraint enrichment hierarchies, which can be used for simulation and analysis optimization in a clear mathematical framework. The use of Petri nets to perform multiple-oriented analysis opens perspectives in the field of industrial risk management. It may significantly reduce the duration of the assessment process. But, most of all, it opens perspectives in the field of risk comparisons and integrated risk management. Moreover, because of the generic nature of the model and tool used, the same concepts and patterns may be used to model a wide range of systems and application fields.
Resumo:
A stochastic nonlinear partial differential equation is constructed for two different models exhibiting self-organized criticality: the Bak-Tang-Wiesenfeld (BTW) sandpile model [Phys. Rev. Lett. 59, 381 (1987); Phys. Rev. A 38, 364 (1988)] and the Zhang model [Phys. Rev. Lett. 63, 470 (1989)]. The dynamic renormalization group (DRG) enables one to compute the critical exponents. However, the nontrivial stable fixed point of the DRG transformation is unreachable for the original parameters of the models. We introduce an alternative regularization of the step function involved in the threshold condition, which breaks the symmetry of the BTW model. Although the symmetry properties of the two models are different, it is shown that they both belong to the same universality class. In this case the DRG procedure leads to a symmetric behavior for both models, restoring the broken symmetry, and makes accessible the nontrivial fixed point. This technique could also be applied to other problems with threshold dynamics.
Resumo:
The pace of on-going climate change calls for reliable plant biodiversity scenarios. Traditional dynamic vegetation models use plant functional types that are summarized to such an extent that they become meaningless for biodiversity scenarios. Hybrid dynamic vegetation models of intermediate complexity (hybrid-DVMs) have recently been developed to address this issue. These models, at the crossroads between phenomenological and process-based models, are able to involve an intermediate number of well-chosen plant functional groups (PFGs). The challenge is to build meaningful PFGs that are representative of plant biodiversity, and consistent with the parameters and processes of hybrid-DVMs. Here, we propose and test a framework based on few selected traits to define a limited number of PFGs, which are both representative of the diversity (functional and taxonomic) of the flora in the Ecrins National Park, and adapted to hybrid-DVMs. This new classification scheme, together with recent advances in vegetation modeling, constitutes a step forward for mechanistic biodiversity modeling.
Resumo:
Photopolymerization is commonly used in a broad range of bioapplications, such as drug delivery, tissue engineering, and surgical implants, where liquid materials are injected and then hardened by means of illumination to create a solid polymer network. However, photopolymerization using a probe, e.g., needle guiding both the liquid and the curing illumination, has not been thoroughly investigated. We present a Monte Carlo model that takes into account the dynamic absorption and scattering parameters as well as solid-liquid boundaries of the photopolymer to yield the shape and volume of minimally invasively injected, photopolymerized hydrogels. In the first part of the article, our model is validated using a set of well-known poly(ethylene glycol) dimethacrylate hydrogels showing an excellent agreement between simulated and experimental volume-growth-rates. In the second part, in situ experimental results and simulations for photopolymerization in tissue cavities are presented. It was found that a cavity with a volume of 152 mm3 can be photopolymerized from the output of a 0.28-mm2 fiber by adding scattering lipid particles while only a volume of 38 mm3 (25%) was achieved without particles. The proposed model provides a simple and robust method to solve complex photopolymerization problems, where the dimension of the light source is much smaller than the volume of the photopolymerizable hydrogel.
Resumo:
RESUME Les évidences montrant que les changements globaux affectent la biodiversité s'accumulent. Les facteurs les plus influant dans ce processus sont les changements et destructions d'habitat, l'expansion des espèces envahissantes et l'impact des changements climatiques. Une évaluation pertinente de la réponse des espèces face à ces changements est essentielle pour proposer des mesures permettant de réduire le déclin actuel de la biodiversité. La modélisation de la répartition d'espèces basée sur la niche (NBM) est l'un des rares outils permettant cette évaluation. Néanmoins, leur application dans le contexte des changements globaux repose sur des hypothèses restrictives et demande une interprétation critique. Ce travail présente une série d'études de cas investiguant les possibilités et limitations de cette approche pour prédire l'impact des changements globaux. Deux études traitant des menaces sur les espèces rares et en danger d'extinction sont présentées. Les caractéristiques éco-géographiques de 118 plantes avec un haut degré de priorité de conservation sont revues. La prévalence des types de rareté sont analysées en relation avec leur risque d'extinction UICN. La revue souligne l'importance de la conservation à l'échelle régionale. Une évaluation de la rareté à échelle globale peut être trompeuse pour certaine espèces car elle ne tient pas en compte des différents degrés de rareté que présente une espèce à différentes échelles spatiales. La deuxième étude test une approche pour améliorer l'échantillonnage d'espèces rares en incluant des phases itératives de modélisation et d'échantillonnage sur le terrain. L'application de l'approche en biologie de la conservation (illustrée ici par le cas du chardon bleu, Eryngium alpinum), permettrait de réduire le temps et les coûts d'échantillonnage. Deux études sur l'impact des changements climatiques sur la faune et la flore africaine sont présentées. La première étude évalue la sensibilité de 227 mammifères africains face aux climatiques d'ici 2050. Elle montre qu'un nombre important d'espèces pourrait être bientôt en danger d'extinction et que les parcs nationaux africains (principalement ceux situé en milieux xériques) pourraient ne pas remplir leur mandat de protection de la biodiversité dans le futur. La seconde étude modélise l'aire de répartition en 2050 de 975 espèces de plantes endémiques du sud de l'Afrique. L'étude propose l'inclusion de méthodes améliorant la prédiction des risques liés aux changements climatiques. Elle propose également une méthode pour estimer a priori la sensibilité d'une espèce aux changements climatiques à partir de ses propriétés écologiques et des caractéristiques de son aire de répartition. Trois études illustrent l'utilisation des modèles dans l'étude des invasions biologiques. Une première étude relate l'expansion de la laitue sáuvage (Lactuca serriola) vers le nord de l'Europe en lien avec les changements du climat depuis 250 ans. La deuxième étude analyse le potentiel d'invasion de la centaurée tachetée (Centaures maculosa), une mauvaise herbe importée en Amérique du nord vers 1890. L'étude apporte la preuve qu'une espèce envahissante peut occuper une niche climatique différente après introduction sur un autre continent. Les modèles basés sur l'aire native prédisent de manière incorrecte l'entier de l'aire envahie mais permettent de prévoir les aires d'introductions potentielles. Une méthode alternative, incluant la calibration du modèle à partir des deux aires où l'espèce est présente, est proposée pour améliorer les prédictions de l'invasion en Amérique du nord. Je présente finalement une revue de la littérature sur la dynamique de la niche écologique dans le temps et l'espace. Elle synthétise les récents développements théoriques concernant le conservatisme de la niche et propose des solutions pour améliorer la pertinence des prédictions d'impact des changements climatiques et des invasions biologiques. SUMMARY Evidences are accumulating that biodiversity is facing the effects of global change. The most influential drivers of change in ecosystems are land-use change, alien species invasions and climate change impacts. Accurate projections of species' responses to these changes are needed to propose mitigation measures to slow down the on-going erosion of biodiversity. Niche-based models (NBM) currently represent one of the only tools for such projections. However, their application in the context of global changes relies on restrictive assumptions, calling for cautious interpretations. In this thesis I aim to assess the effectiveness and shortcomings of niche-based models for the study of global change impacts on biodiversity through the investigation of specific, unsolved limitations and suggestion of new approaches. Two studies investigating threats to rare and endangered plants are presented. I review the ecogeographic characteristic of 118 endangered plants with high conservation priority in Switzerland. The prevalence of rarity types among plant species is analyzed in relation to IUCN extinction risks. The review underlines the importance of regional vs. global conservation and shows that a global assessment of rarity might be misleading for some species because it can fail to account for different degrees of rarity at a variety of spatial scales. The second study tests a modeling framework including iterative steps of modeling and field surveys to improve the sampling of rare species. The approach is illustrated with a rare alpine plant, Eryngium alpinum and shows promise for complementing conservation practices and reducing sampling costs. Two studies illustrate the impacts of climate change on African taxa. The first one assesses the sensitivity of 277 mammals at African scale to climate change by 2050 in terms of species richness and turnover. It shows that a substantial number of species could be critically endangered in the future. National parks situated in xeric ecosystems are not expected to meet their mandate of protecting current species diversity in the future. The second study model the distribution in 2050 of 975 endemic plant species in southern Africa. The study proposes the inclusion of new methodological insights improving the accuracy and ecological realism of predictions of global changes studies. It also investigates the possibility to estimate a priori the sensitivity of a species to climate change from the geographical distribution and ecological proprieties of the species. Three studies illustrate the application of NBM in the study of biological invasions. The first one investigates the Northwards expansion of Lactuca serriola L. in Europe during the last 250 years in relation with climate changes. In the last two decades, the species could not track climate change due to non climatic influences. A second study analyses the potential invasion extent of spotted knapweed, a European weed first introduced into North America in the 1890s. The study provides one of the first empirical evidence that an invasive species can occupy climatically distinct niche spaces following its introduction into a new area. Models fail to predict the current full extent of the invasion, but correctly predict areas of introduction. An alternative approach, involving the calibration of models with pooled data from both ranges, is proposed to improve predictions of the extent of invasion on models based solely on the native range. I finally present a review on the dynamic nature of ecological niches in space and time. It synthesizes the recent theoretical developments to the niche conservatism issues and proposes solutions to improve confidence in NBM predictions of the impacts of climate change and species invasions on species distributions.
Resumo:
The asphalt concrete (AC) dynamic modulus (|E*|) is a key design parameter in mechanistic-based pavement design methodologies such as the American Association of State Highway and Transportation Officials (AASHTO) MEPDG/Pavement-ME Design. The objective of this feasibility study was to develop frameworks for predicting the AC |E*| master curve from falling weight deflectometer (FWD) deflection-time history data collected by the Iowa Department of Transportation (Iowa DOT). A neural networks (NN) methodology was developed based on a synthetically generated viscoelastic forward solutions database to predict AC relaxation modulus (E(t)) master curve coefficients from FWD deflection-time history data. According to the theory of viscoelasticity, if AC relaxation modulus, E(t), is known, |E*| can be calculated (and vice versa) through numerical inter-conversion procedures. Several case studies focusing on full-depth AC pavements were conducted to isolate potential backcalculation issues that are only related to the modulus master curve of the AC layer. For the proof-of-concept demonstration, a comprehensive full-depth AC analysis was carried out through 10,000 batch simulations using a viscoelastic forward analysis program. Anomalies were detected in the comprehensive raw synthetic database and were eliminated through imposition of certain constraints involving the sigmoid master curve coefficients. The surrogate forward modeling results showed that NNs are able to predict deflection-time histories from E(t) master curve coefficients and other layer properties very well. The NN inverse modeling results demonstrated the potential of NNs to backcalculate the E(t) master curve coefficients from single-drop FWD deflection-time history data, although the current prediction accuracies are not sufficient to recommend these models for practical implementation. Considering the complex nature of the problem investigated with many uncertainties involved, including the possible presence of dynamics during FWD testing (related to the presence and depth of stiff layer, inertial and wave propagation effects, etc.), the limitations of current FWD technology (integration errors, truncation issues, etc.), and the need for a rapid and simplified approach for routine implementation, future research recommendations have been provided making a strong case for an expanded research study.
Resumo:
The purpose of the present article is to take stock of a recent exchange in Organizational Research Methods between critics (Rönkkö & Evermann, 2013) and proponents (Henseler et al., 2014) of partial least squares path modeling (PLS-PM). The two target articles were centered around six principal issues, namely whether PLS-PM: (1) can be truly characterized as a technique for structural equation modeling (SEM); (2) is able to correct for measurement error; (3) can be used to validate measurement models; (4) accommodates small sample sizes; (5) is able to provide null hypothesis tests for path coefficients; and (6) can be employed in an exploratory, model-building fashion. We summarize and elaborate further on the key arguments underlying the exchange, drawing from the broader methodological and statistical literature in order to offer additional thoughts concerning the utility of PLS-PM and ways in which the technique might be improved. We conclude with recommendations as to whether and how PLS-PM serves as a viable contender to SEM approaches for estimating and evaluating theoretical models.
Exploring the rate-limiting steps in visual phototransduction recovery by bottom-up kinetic modeling
Resumo:
Phototransduction in vertebrate photoreceptor cells represents a paradigm of signaling pathways mediated by G-protein-coupled receptors (GPCRs), which share common modules linking the initiation of the cascade to the final response of the cell. In this work, we focused on the recovery phase of the visual photoresponse, which is comprised of several interacting mechanisms. We employed current biochemical knowledge to investigate the response mechanisms of a comprehensive model of the visual phototransduction pathway. In particular, we have improved the model by implementing a more detailed representation of the recoverin (Rec)-mediated calcium feedback on rhodopsin kinase and including a dynamic arrestin (Arr) oligomerization mechanism. The model was successfully employed to investigate the rate limiting steps in the recovery of the rod photoreceptor cell after illumination. Simulation of experimental conditions in which the expression levels of rhodospin kinase (RK), of the regulator of the G-protein signaling (RGS), of Arr and of Rec were altered individually or in combination revealed severe kinetic constraints to the dynamics of the overall network. Our simulations confirm that RGS-mediated effector shutdown is the rate-limiting step in the recovery of the photoreceptor and show that the dynamic formation and dissociation of Arr homodimers and homotetramers at different light intensities significantly affect the timing of rhodopsin shutdown. The transition of Arr from its oligomeric storage forms to its monomeric form serves to temper its availability in the functional state. Our results may explain the puzzling evidence that overexpressing RK does not influence the saturation time of rod cells at bright light stimuli. The approach presented here could be extended to the study of other GPCR signaling pathways.
Resumo:
We present a framework for modeling right-hand gestures in bowed-string instrument playing, applied to violin. Nearly non-intrusive sensing techniques allow for accurate acquisition of relevant timbre-related bowing gesture parameter cues. We model the temporal contour of bow transversal velocity, bow pressing force, and bow-bridge distance as sequences of short segments, in particular B´ezier cubic curve segments. Considering different articulations, dynamics, andcontexts, a number of note classes is defined. Gesture parameter contours of a performance database are analyzed at note-level by following a predefined grammar that dictatescharacteristics of curve segment sequences for each of the classes into consideration. Based on dynamic programming, gesture parameter contour analysis provides an optimal curve parameter vector for each note. The informationpresent in such parameter vector is enough for reconstructing original gesture parameter contours with significant fidelity. From the resulting representation vectors, weconstruct a statistical model based on Gaussian mixtures, suitable for both analysis and synthesis of bowing gesture parameter contours. We show the potential of the modelby synthesizing bowing gesture parameter contours from an annotated input score. Finally, we point out promising applicationsand developments.
Resumo:
Large Dynamic Message Signs (DMSs) have been increasingly used on freeways, expressways and major arterials to better manage the traffic flow by providing accurate and timely information to drivers. Overhead truss structures are typically employed to support those DMSs allowing them to provide wider display to more lanes. In recent years, there is increasing evidence that the truss structures supporting these large and heavy signs are subjected to much more complex loadings than are typically accounted for in the codified design procedures. Consequently, some of these structures have required frequent inspections, retrofitting, and even premature replacement. Two manufacturing processes are primarily utilized on truss structures - welding and bolting. Recently, cracks at welding toes were reported for the structures employed in some states. Extremely large loads (e.g., due to high winds) could cause brittle fractures, and cyclic vibration (e.g., due to diurnal variation in temperature or due to oscillations in the wind force induced by vortex shedding behind the DMS) may lead to fatigue damage, as these are two major failures for the metallic material. Wind and strain resulting from temperature changes are the main loads that affect the structures during their lifetime. The American Association of State Highway and Transportation Officials (AASHTO) Specification defines the limit loads in dead load, wind load, ice load, and fatigue design for natural wind gust and truck-induced gust. The objectives of this study are to investigate wind and thermal effects in the bridge type overhead DMS truss structures and improve the current design specifications (e.g., for thermal design). In order to accomplish the objective, it is necessary to study structural behavior and detailed strain-stress of the truss structures caused by wind load on the DMS cabinet and thermal load on the truss supporting the DMS cabinet. The study is divided into two parts. The Computational Fluid Dynamics (CFD) component and part of the structural analysis component of the study were conducted at the University of Iowa while the field study and related structural analysis computations were conducted at the Iowa State University. The CFD simulations were used to determine the air-induced forces (wind loads) on the DMS cabinets and the finite element analysis was used to determine the response of the supporting trusses to these pressure forces. The field observation portion consisted of short-term monitoring of several DMS Cabinet/Trusses and long-term monitoring of one DMS Cabinet/Truss. The short-term monitoring was a single (or two) day event in which several message sign panel/trusses were tested. The long-term monitoring field study extended over several months. Analysis of the data focused on trying to identify important behaviors under both ambient and truck induced winds and the effect of daily temperature changes. Results of the CFD investigation, field experiments and structural analysis of the wind induced forces on the DMS cabinets and their effect on the supporting trusses showed that the passage of trucks cannot be responsible for the problems observed to develop at trusses supporting DMS cabinets. Rather the data pointed toward the important effect of the thermal load induced by cyclic (diurnal) variations of the temperature. Thermal influence is not discussed in the specification, either in limit load or fatigue design. Although the frequency of the thermal load is low, results showed that when temperature range is large the restress range would be significant to the structure, especially near welding areas where stress concentrations may occur. Moreover stress amplitude and range are the primary parameters for brittle fracture and fatigue life estimation. Long-term field monitoring of one of the overhead truss structures in Iowa was used as the research baseline to estimate the effects of diurnal temperature changes to fatigue damage. The evaluation of the collected data is an important approach for understanding the structural behavior and for the advancement of future code provisions. Finite element modeling was developed to estimate the strain and stress magnitudes, which were compared with the field monitoring data. Fatigue life of the truss structures was also estimated based on AASHTO specifications and the numerical modeling. The main conclusion of the study is that thermal induced fatigue damage of the truss structures supporting DMS cabinets is likely a significant contributing cause for the cracks observed to develop at such structures. Other probable causes for fatigue damage not investigated in this study are the cyclic oscillations of the total wind load associated with the vortex shedding behind the DMS cabinet at high wind conditions and fabrication tolerances and induced stresses due to fitting of tube to tube connections.