837 resultados para drug delivery systems


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Topical photodynamic therapy is used for a variety of malignant and pre-malignant skin disorders, including Bowen's Disease and Superficial Basal Cell Carcinoma. A haem precursor, typically 5-aminolevulinic acid (ALA), acting as a prodrug, is absorbed and converted by the haem biosynthetic pathway to photoactive protoprophyrin IX (PpIX), which accumulates preferentially in rapidly dividing
cells. Cell destruction occurs when PpIx is activated by an intense light source of appropriate wavelength. Topical delivery of ALA avoids the prolonged photosensitivity reactions associated with systemic administration of photosensitisers but its clinical utility is influenced by the tissue penetration characteristics of the drug, its ease of application and the stability of the active agent in the applied dose. This review, therefore, focuses on drug delivery applications for topical, ALA-based PDT. Issues considered in detail include physical and chemical enhancement strategies for tissue penetration of ALA and subsequent intracellular accumulation of PpIX, together with formulation strategies and drug delivery design solutions appropriate to various clinical applications. The fundamental aspects of drug diffusion in
relation to the physicochemical properties of ALA are reviewed and specific consideration is given to the degradation pathways of ALA in formulated systems that, in turn, influence the design of stable topical formulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Importance of the field: Conventional dosing methods are frequently unable to deliver the clinical requirement of the patient. The ability to control the delivery of drugs from implanted materials is difficult to achieve, but offers promise in diverse areas such as infection-resistant medical devices and 10 responsive implants for diabetics. Areas covered in this review: This review gives a broad overview of recent progress in the use of triggers that can be used to achieve modulation of drug release rates from implantable biomaterials. In particular, these can be classified as being responsive to one or more of the following stimuli: a 15 chemical species, light, heat, magnetism, ultrasound and mechanical force. What the reader will gain: An overview of the potential for triggered drug delivery to give methods for tailoring the dose, location and time of release of a wide range of drugs where traditional dosing methods are not suitable. Particular emphasis is given to recently reported systems, and important 20 historical reports are included. Take home message: The use of externally or internally applied triggers of drug delivery to biomaterials has significant potential for improved delivery modalities and infection resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research into the targeting of drug substances to a specific disease site has enjoyed sustained activity for many decades. The reason for such fervent activity is the considerable clinical advantages that can be gained when the delivery system plays a pivotal role in determining where the drug is deposited. When compared to conventional formulations where no such control exists, such as parenteral and oral systems, the sophisticated targeting device can reduce side effects and limit collateral damage to surrounding normal tissue. No more so is this important than in the area of oncology when dose-limiting side effects are often encountered as an ever present difficulty. In this review, the types of colloidal carrier commonly used in targeted drug delivery are discussed, such as gold and polymeric colloids. In particular, the process of attaching targeting capabilities is considered, with reference to antibody technologies used as the targeting motifs. Nanotechnology has brought together a means to carry both a drug and targeting ligand in self-contained constructs and their applications to both clinical therapy and diagnosis are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermoresponsive polymeric platforms are used to optimise drug delivery in pharmaceutical systems and bioactive medical devices. However, the practical application of these systems is compromised by their poor mechanical properties. This study describes the design of thermoresponsive semi-interpenetrating polymer networks (s-IPNs) based on cross-linked p(NIPAA) or p(NIPAA-co-HEMA) hydrogels containing poly(e-caprolactone) designed to address this issue. Using DSC, the lower critical solution temperature of the co-polymer and p(NIPAA) matrices were circa 34 °C and 32 °C, respectively. PCL was physically dispersed within the hydrogel matrices as confirmed using confocal scanning laser microscopy and DSC and resulted in marked changes in the mechanical properties (ultimate tensile strength, Young's modulus) without adversely compromising the elongation properties. P(NIPAA) networks containing dispersed PCL exhibited thermoresponsive swelling properties following immersion in buffer (pH 7), with the equilibrium-swelling ratio being greater at 20 °C than 37 °C and greatest for p(NIPAA)/PCL systems at 20 °C. The incorporation of PCL significantly lowered the equilibrium swelling ratio of the various networks but this was not deemed practically significant for s-IPNs based on p(NIPAA). Thermoresponsive release of metronidazole was observed from s-IPN composed of p(NIPAA)/PCL at 37 °C but not from p(NIPAA-co-HEMA)/PCL at this temperature. In all other platforms, drug release at 20 °C was significantly similar to that at 37 °C and was diffusion controlled. This study has uniquely described a strategy by which thermoresponsive drug release may be performed from polymeric platforms with highly elastic properties. It is proposed that these materials may be used clinically as bioactive endotracheal tubes, designed to offer enhanced resistance to ventilator associated pneumonia, a clinical condition associated with the use of endotracheal tubes where stimulus responsive drug release from biomaterials of significant mechanical properties would be advantageous. © 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We characterized hydrogels, prepared from aqueous blends of poly(methyl vinyl ether-co-maleic acid) (PMVE/MA) and poly(ethylene glycol) (PEG 10,000 Daltons) containing a pore-forming agent (sodium bicarbonate, NaHCO ). Increase in NaHCO content increased the equilibrium water content (EWC) and average molecular weight between crosslinks (M ) of hydrogels. For example, the %EWC was 731, 860, 1109, and 7536% and the M was 8.26, 31.64, 30.04, and 3010.00 × 10 g/mol for hydrogels prepared from aqueous blends containing 0, 1, 2, and 5% w/w of NaHCO , respectively. Increase in NaHCO content also resulted in increased permeation of insulin. After 24 h, percentage permeation was 0.94, 3.68, and 25.71% across hydrogel membranes prepared from aqueous blends containing 0, 2, and 5% w/w of NaHCO , respectively. Hydrogels containing the pore-forming agent were fabricated into microneedles (MNs) for transdermal drug delivery applications by integrating the MNs with insulin-loaded patches. It was observed that the mean amount of insulin permeating across neonatal porcine skin in vitro was 20.62% and 52.48% from hydrogel MNs prepared from aqueous blends containing 0 and 5% w/w of NaHCO . We believe that these pore-forming hydrogels are likely to prove extremely useful for applications in transdermal drug delivery of biomolecules. © 2012 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In situ forming (ISF) drug delivery implants have gained tremendous levels of interest over the last few decades. This is due to their wide range of biomedical applications such as in tissue engineering, cell encapsulation, microfluidics, bioengineering and drug delivery. Drug delivery implants forming upon injection has shown a range of advantages which include localized drug delivery, easy and less invasive application, sustained drug action, ability to tailor drug delivery, reduction in side effects associated with systemic delivery and also improved patient compliance and comfort. Different factors such as temperature, pH, ions, and exchange of solvents are involved in in situ implant formation. This review especially focuses on ISF implants that are formed through solvent induced phase inversion (SPI) technique. The article critically reviews and compares a wide range of polymers, solvents, and co-solvents that have been used in SPI implant preparation for control release of a range of drug molecules. Major drawback of SPI systems has been their high burst release. In this regard, the article exhaustively discusses factors that affect the burst release and different modification strategies that has been utilised to reduce the burst effect from these implants. Performance and controversial issues associated with the use of different biocompatible solvents in SPI systems is also discussed. Biodegradation, formulation stability, methods of characterisation and sterilisation techniques of SPI systems is comprehensively reviewed. Furthermore, the review also examines current SPI-based marketed products, their therapeutic application and associated clinical data. It also exemplifies the interest of multi-billion dollar pharma companies worldwide for further developments of SPI systems to a range of therapeutic applications. The authors believe that this will be the first review article that extensively investigate and discusses studies done to date on SPI systems. In so doing, this article will undoubtedly serve as an enlightening tool for the scientists working in the concerned area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe, for the first time, hydrogel-forming microneedle arrays prepared from "super swelling" polymeric compositions. We produced a microneedle formulation with enhanced swelling capabilities from aqueous blends containing 20% w/w Gantrez S-97, 7.5% w/w PEG 10,000 and 3% w/w Na2CO3 and utilised a drug reservoir of a lyophilised wafer-like design. These microneedle-lyophilised wafer compositions were robust and effectively penetrated skin, swelling extensively, but being removed intact. In in vitro delivery experiments across excised neonatal porcine skin, approximately 44 mg of the model high dose small molecule drug ibuprofen sodium was delivered in 24 h, equating to 37% of the loading in the lyophilised reservoir. The super swelling microneedles delivered approximately 1.24 mg of the model protein ovalbumin over 24 h, equivalent to a delivery efficiency of approximately 49%. The integrated microneedle-lyophilised wafer delivery system produced a progressive increase in plasma concentrations of ibuprofen sodium in rats over 6 h, with a maximal concentration of approximately 179 µg/ml achieved in this time. The plasma concentration had fallen to 71±6.7 µg/ml by 24 h. Ovalbumin levels peaked in rat plasma after only 1 hour at 42.36±17.01 ng/ml. Ovalbumin plasma levels then remained almost constant up to 6 h, dropping somewhat at 24 h, when 23.61±4.84 ng/ml was detected. This work represents a significant advancement on conventional microneedle systems, which are presently only suitable for bolus delivery of very potent drugs and vaccines. Once fully developed, such technology may greatly expand the range of drugs that can be delivered transdermally, to the benefit of patients and industry. Accordingly, we are currently progressing towards clinical evaluations with a range of candidate molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Transdermal drug delivery offers a number of advantages for the patient, not only due to its non-invasive and convenient nature, but also due to factors such as avoidance of first-pass metabolism and prevention of gastrointestinal degradation. It has been demonstrated that microneedles (MNs) can increase the number of compounds amenable to transdermal delivery by penetrating the skin's protective barrier, the stratum corneum, and creating a pathway for drug permeation to the dermal tissue below.

AREAS COVERED: MNs have been extensively investigated for drug and vaccine delivery. The different types of MN arrays and their delivery capabilities are discussed in terms of drugs, including biopharmaceutics and vaccines. Patient usage and effects on the skin are also considered.

EXPERT OPINION: MN research and development is now at the stage where commercialisation is a viable possibility. There are a number of long-term safety questions relating to patient usage which will need to be addressed moving forward. Regulatory guidance is awaited to direct the scale-up of the manufacturing process alongside provision of clearer patient instruction for safe and effective use of MN devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de doutoramento, Farmácia (Tecnologia Farmacêutica), Universidade de Lisboa, Faculdade de Farmácia, 2016

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les micelles polyioniques ont émergé comme des systèmes prometteurs de relargage de médicaments hydrophiles ioniques. Le but de cette étude était le développement des micelles polyioniques à base de dextrane pour la relargage de médicaments hydrophiles cationiques utilisant une nouvelle famille de copolymères bloc carboxymethyldextran-poly(éthylène glycol) (CMD-PEG). Quatre copolymères CMD-PEG ont été préparés dont deux copolymères identiques en termes de longueurs des blocs de CMD et de PEG mais différent en termes de densité de charges du bloc CMD; et deux autres copolymères dans lesquels les blocs chargés sont les mêmes mais dont les blocs de PEG sont différents. Les propriétés d’encapsulation des micelles CMD-PEG ont été évaluées avec différentes molécules cationiques: le diminazène (DIM), un médicament cationique modèle, le chlorhydrate de minocycline (MH), un analogue semi-synthétique de la tétracycline avec des propriétés neuro-protectives prometteuses et différents antibiotiques aminoglycosidiques. La cytotoxicité des copolymères CMD-PEG a été évaluée sur différentes lignées cellulaires en utilisant le test MTT et le test du Bleu Alamar. La formation de micelles des copolymères de CMD-PEG a été caractérisée par différentes techniques telles que la spectroscopie RMN 1H, la diffusion de la lumière dynamique (DLS) et la titration calorimétrique isotherme (ITC). Le taux de relargage des médicaments et l’activité pharmacologique des micelles contenant des médicaments ont aussi été évalués. Les copolymères CMD-PEG n'ont induit aucune cytotoxicité dans les hépatocytes humains et dans les cellules microgliales murines (N9) après 24 h incubation pour des concentrations allant jusqu’à 15 mg/mL. Les interactions électrostatiques entre les copolymères de CMD-PEG et les différentes drogues cationiques ont amorcé la formation de micelles polyioniques avec un coeur composé du complexe CMD-médicaments cationiques et une couronne composée de PEG. Les propriétés des micelles DIM/CMDPEG ont été fortement dépendantes du degré de carboxyméthylation du bloc CMD. Les micelles de CMD-PEG de degré de carboxyméthylation du bloc CMD ≥ 60 %, ont incorporé jusqu'à 64 % en poids de DIM et ont résisté à la désintégration induite par les sels et ceci jusqu'à 400 mM NaCl. Par contre, les micelles de CMD-PEG de degré de carboxyméthylation ~ 30% avaient une plus faible teneur en médicament (~ 40 % en poids de DIM) et se désagrégeaient à des concentrations en sel inférieures (∼ 100 mM NaCl). Le copolymère de CMD-PEG qui a montré les propriétés micellaires les plus satisfaisantes a été sélectionné comme système de livraison potentiel de chlorhydrate de minocycline (MH) et d’antibiotiques aminoglycosidiques. Les micelles CMD-PEG encapsulantes de MH ou d’aminoglycosides ont une petite taille (< 200 nm de diamètre), une forte capacité de chargement (≥ 50% en poids de médicaments) et une plus longue période de relargage de médicament. Ces micelles furent stables en solution aqueuse pendant un mois; après lyophilisation et en présence d'albumine sérique bovine. De plus, les micelles ont protégé MH contre sa dégradation en solutions aqueuses. Les micelles encapsulant les drogues ont maintenu les activités pharmacologiques de ces dernières. En outre, les micelles MH réduisent l’inflammation induite par les lipopolysaccharides dans les cellules microgliales murines (N9). Les micelles aminoglycosides ont été quant à elles capable de tuer une culture bactérienne test. Toutefois les micelles aminoglycosides/CMDPEG furent instables dans les conditions physiologiques. Les propriétés des micelles ont été considérablement améliorées par des modifications hydrophobiques de CMD-PEG. Ainsi, les micelles aminoglycosides/dodecyl-CMD-PEG ont montré une taille plus petite et une meilleure stabilité aux conditions physiologiques. Les résultats obtenus dans le cadre de cette étude montrent que CMD-PEG copolymères sont des systèmes prometteurs de relargage de médicaments cationiques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been significant interest in the methodologies of controlled release for a diverse range of applications spanning drug delivery, biological and chemical sensors, and diagnostics. The advancement in novel substrate-polymer coupling moieties has led to the discovery of self-immolative linkers. This new class of linker has gained popularity in recent years in polymeric release technology as a result of stable bond formation between protecting and leaving groups, which becomes labile upon activation, leading to the rapid disassembly of the parent polymer. This ability has prompted numerous studies into the design and development of self-immolative linkers and the kinetics surrounding their disassembly. This review details the main concepts that underpin self-immolative linker technologies that feature in polymeric or dendritic conjugate systems and outlines the chemistries of amplified self-immolative elimination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis was devoted to the development of innovative oral delivery systems for two different molecules. In the first part, microparticles (MPs) based on xylan and Eudragit® S- 100 were produced and used to encapsulate 5-aminosalicylic acid for colon delivery. Xylan was extracted from corn cobs and characterized in terms of its physicochemical, rheological and toxicological properties. The polymeric MPs were prepared by interfacial cross-linking polymerization and spray-drying and characterized for their morphology, mean size and distribution, thermal stability, crystallinity, entrapment efficiency and in vitro drug release. MPs with suitable physical characteristics and satisfactory yields were prepared by both methods, although the spray-dried systems showed higher thermal stability. In general, spraydried MPs would be preferable systems due to their thermal stability and absence of toxic agents used in their preparation. However, drug loading and release need to be optimized. In the second part of this thesis, oil-in-water microemulsions (O/W MEs) based on mediumchain triglycerides were formulated as drug carriers and solubility enhancers for amphotericin B (AmB). Phase diagrams were constructed using surfactant blends with hydrophiliclipophilic balance values between 9.7 and 14.4. The drug-free and drug-loaded MEs presented spherical non-aggregated droplets around 80 and 120 nm, respectively, and a low polydispersity index. The incorporation of AmB was high and depended on the volume fraction of the disperse phase. These MEs did not reduce the viability of J774.A1 macrophage-like cells for concentrations up to 25 μg/mL of AmB. Therefore, O/W MEs based on propylene glycol esters of caprylic acid may be considered as suitable delivery systems for AmB