905 resultados para drought
Resumo:
Includes bibliography
Resumo:
The physiological response of four commercial sugarcane genotypes to water stress was evaluated by measuring the photochemical efficiency of the photosystem II (chlorophyll a fluorescence ratio, F v/F m), estimated chlorophyll content (SPAD unit), leaf temperature (LT) and leaf relative water content (RWC). A field trial was established in the subtropical area with well-watered and water-stressed genotypes, in completely randomized blocks with four replicates in a 4 × 2 × 3 factorial design (genotype × irrigation × evaluation date). Physiological measurements were done during a 90 day-period of formative stage of plants. The analysis of variance showed that the interaction of genotype × irrigation × evaluation date had a significant effect for three physiological markers tested, F v/F m, SPAD unit and RWC. Under non-stressed conditions, all genotypes showed similar responses for the four markers. Under water deficiency stress, two drought-tolerant genotypes, HOCP01-523 and TCP89-3505 displayed higher values for F v/F m, SPAD unit and RWC, and lower values for LT, and could be classified as tolerant. It is therefore possible to use these physiological water stress associated traits as scorable marker traits for selecting drought-tolerant sugarcane genotypes in future breeding programs. © 2011 Society for Sugar Research & Promotion.
Resumo:
Forest dynamics will depend upon the physiological performance of individual tree species under more stressful conditions caused by climate change. In order to compare the idiosyncratic responses of Mediterranean tree species (Quercus faginea, Pinus nigra, Juniperus thurifera) coexisting in forests of central Spain, we evaluated the temporal changes in secondary growth (basal area increment; BAI) and intrinsic water-use efficiency (iWUE) during the last four decades, determined how coexisting species are responding to increases in atmospheric CO2 concentrations (Ca) and drought stress, and assessed the relationship among iWUE and growth during climatically contrasting years. All species increased their iWUE (ca. +15 to +21 %) between the 1970s and the 2000s. This increase was positively related to Ca for J. thurifera and to higher Ca and drought for Q. faginea and P. nigra. During climatically favourable years the study species either increased or maintained their growth at rising iWUE, suggesting a higher CO2 uptake. However, during unfavourable climatic years Q. faginea and especially P. nigra showed sharp declines in growth at enhanced iWUE, likely caused by a reduced stomatal conductance to save water under stressful dry conditions. In contrast, J. thurifera showed enhanced growth also during unfavourable years at increased iWUE, denoting a beneficial effect of Ca even under climatically harsh conditions. Our results reveal significant inter-specific differences in growth driven by alternative physiological responses to increasing drought stress. Thus, forest composition in the Mediterranean region might be altered due to contrasting capacities of coexisting tree species to withstand increasingly stressful conditions. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
We analyzed the differences between irrigated and non-irrigated plants of three congeneric Styrax species that present distinct distribution patterns in the physiognomies of the Cerrado vegetation in Brazil. Styrax ferrugineus showed a stomatal conductance (gs) unresponsive to soil water deficit in potted plants. This may explain the high gas exchange and photochemical efficiency found in this species, which is well adapted to the Cerrado sensu stricto (s. str.), a savanna-type vegetation. S. camporum, which is widely distributed in the Cerrado sensu lato (s. l.) areas, was the only species that exhibited increased intrinsic water use efficiency on the days of maximum water deficit. This result distinguishes S. camporum from S. pohlii, which is a forest species, since the gs of both species decreased during the days of maximum water stress. In contrast to other studies, we propose that instantaneously measured traits, such as leaf gas exchange rates and chlorophyll fluorescence, may be used to detect non-plastic performances in response to environmental stress, helping explain distinct geographical distributions of congeneric species in the Cerrado vegetation. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Includes bibliography
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Drought is not an unusual phenomenon on the Canadian prairies or the U.S. Great Plains. There were many short-term droughts in the prairies during the 20th century that generally lasted one to two years (e.g., 1961, 1988). The Canadian prairies multi-year drought event (1999-2003+) has been considered similar in severity to the 1930s drought years. The 2004 Prairie Drought Workshop resulted in 76 scientists and resource managers gathering in Calgary, Alberta, to share information on drought science, impacts, and monitoring. Presenters examined the impacts on agriculture, stream flow, forests, and ground water, including potential impacts under a changed climate. Though focused on the Canadian prairies, the information presented could be applied to many parts of the U.S. Great Plains.
Resumo:
Time series analysis of a diatom-inferred drought record suggests that Holocene hydroclimate of the northern Rocky Mountains has been characterized by oscillation between two mean climate states. The dominant climate state was initiated at the onset of the Holocene (ca. 11 ka); under this climate state, drought was strongly cyclic, recurring at frequencies that are similar to twentieth century multidecadal phase changes of the Pacific Decadal Oscillation. This pattern remained consistent throughout much of the mid- Holocene, continuing until ca. 4.5 ka. After this time the mean climate state changed, and drought recurrence became unstable; periods of cyclic drought alternated with periods of less predictable drought. The timing of this shift in climate was coincident with widespread severe drought in the mid-continent of North America. Overall, the strongest periodicity in severe drought occurred during the mid-Holocene, when temperatures in the northern Rocky Mountains were warmer than today.
Resumo:
Sugarcane is an important sugar and energy crop that can be used efficiently for biofuels production. The development of sugarcane cultivars tolerant to drought could allow for the expansion of plantations to sub-prime regions. Knowledge on the mechanisms underlying drought responses and its relationship with carbon partition would greatly help to define routes to increase yield. In this work we studied sugarcane responses to drought using a custom designed oligonucleotide array with 21,901 different probes. The oligoarrays were designed to contain probes that detect transcription in both sense and antisense orientation. We validated the results obtained using quantitative real-time PCR (qPCR). A total of 987 genes were differentially expressed in at least one sample of sugarcane plants submitted to drought for 24, 72 and 120 h. Among them, 928 were sense transcripts and 59 were antisense transcripts. Genes related to Carbohydrate Metabolism, RNA Metabolism and Signal Transduction were selected for gene expression validation by qPCR that indicated a validation percentage of 90 %. From the probes presented on the array, 75 % of the sense probes and 11.9 % of the antisense probes have signal above background and can be classified as expressed sequences. Our custom sugarcane oligonucleotide array provides sensitivity and good coverage of sugarcane transcripts for the identification of a representative proportion of natural antisense transcripts (NATs) and sense-antisense transcript pairs (SATs). The antisense transcriptome showed, in most cases, co-expression with respective sense transcripts.
Resumo:
Background: Drought is a major abiotic stress that affects crop productivity worldwide. Sugarcane can withstand periods of water scarcity during the final stage of culm maturation, during which sucrose accumulation occurs. Meanwhile, prolonged periods of drought can cause severe plant losses. Methodology/Principal Findings: In a previous study, we evaluated the transcriptome of drought-stressed plants to better understand sugarcane responses to drought. Among the up-regulated genes was Scdr1 (sugarcane drought-responsive 1). The aim of the research reported here was to characterize this gene. Scdr1 encodes a putative protein containing 248 amino acids with a large number of proline (19%) and cysteine (13%) residues. Phylogenetic analysis showed that ScDR1is in a clade with homologs from other monocotyledonous plants, separate from those of dicotyledonous plants. The expression of Scdr1 in different varieties of sugarcane plants has not shown a clear association with drought tolerance. Conclusions/Significance: The overexpression of Scdr1 in transgenic tobacco plants increased their tolerance to drought, salinity and oxidative stress, as demonstrated by increased photosynthesis, water content, biomass, germination rate, chlorophyll content and reduced accumulation of ROS. Physiological parameters, such as transpiration rate (E), net photosynthesis (A), stomatal conductance (gs) and internal leaf CO2 concentration, were less affected by abiotic stresses in transgenic Scdr1 plants compared with wild-type plants. Overall, our results indicated that Scdr1 conferred tolerance to multiple abiotic stresses, highlighting the potential of this gene for biotechnological applications.
Resumo:
Managed environments in the form of well watered and water stressed trials were performed to study the genetic basis of grain yield and stay green in sorghum with the objective of validating previously detected QTL. As variations in phenology and plant height may influence QTL detection for the target traits, QTL for flowering time and plant height were introduced as cofactors in QTL analyses for yield and stay green. All but one of the flowering time QTL were detected near yield and stay green QTL. Similar co-localization was observed for two plant height QTL. QTL analysis for yield, using flowering time/plant height cofactors, led to yield QTL on chromosomes 2, 3, 6, 8 and 10. For stay green, QTL on chromosomes 3, 4, 8 and 10 were not related to differences in flowering time/plant height. The physical positions for markers in QTL regions projected on the sorghum genome suggest that the previously detected plant height QTL, Sb-HT9-1, and Dw2, in addition to the maturity gene, Ma5, had a major confounding impact on the expression of yield and stay green QTL. Co-localization between an apparently novel stay green QTL and a yield QTL on chromosome 3 suggests there is potential for indirect selection based on stay green to improve drought tolerance in sorghum. Our QTL study was carried out with a moderately sized population and spanned a limited geographic range, but still the results strongly emphasize the necessity of corrections for phenology in QTL mapping for drought tolerance traits in sorghum.
Resumo:
A new gymnosperm taxon from the Lower Cretaceous (upper Aptian to possibly lower Albian) Crato Formation of Brazil, Duartenia araripensis gen. nov. et sp. nov. is described. The most prominent specimen, a branch with attached lateral branches of higher orders exhibits a distinct anisotomous branching pattern. The very dense wood is composed of tracheids with spaced and partly contiguous uniseriate pits and low rays with one pit per cross-field (mixed protopinaceous type). When foliage is not abraded, Duartenia exhibits coriacious Brachyphyllum-type leaves. Duartenia may be linked to cheirolepid conifers, however, the systematic affinity remains uncertain. The dense wood, characteristic growth pattern and thick, scale like, trichome bearing leaves may be related to ecological conditions that reflect a seasonally dry climate.
Resumo:
The objective of this study was to identify and characterize homogeneous environments based on the probability of drought/wet occurrence in the central-northern Brazil, considering Rondonia, Mato Grosso, Goias and Tocantins States. The drought index denominated the moisture anomaly Z-index (Z-index) was used. The input climate data for the drought index was generated by the regional climate model RegCM3 for the period from 1975 to 1989. As result of cluster analysis, it was identified 13 homogeneous environments. These environments were characterized based on the probability of drought/wet, relative density of drought/wet occurrence, annual rainfall variability and probability of drought occurrence during the rainy season (October to March). The Mato Grosso State had the highest number of homogeneous environments and the environment 11, located at southwest of this State had the highest probability of drought occurrence, 9%. The environment 10, located at the extreme east of Goias State, showed the lowest median for the total annual rainfall. The climatic event with the highest probability of occurrence in the study area is close to normal or normality moisture.