999 resultados para download
Resumo:
This paper describes a novel Autonomous Surface Vehicle capable of navigating throughout complex inland water storages and measuring a range of water quality properties and greenhouse gas emissions. The 16 ft long solar powered catamaran can collect this information throughout the water column whilst the vehicle is moving. A unique feature of this ASV is its integration into a storage scale floating sensor network to allow remote mission uploads, data download and adaptive sampling strategies. This paper provides an overview of the vehicle design and operation including control, laser-based obstacle avoidance, and vision-based inspection capabilities. Experimental results are shown illustrating its ability to continuously collect key water quality parameters and compliment intensive manual monitoring campaigns.
Resumo:
Background Through clinical observation nursing staff of an inpatient rehabilitation unit identified a link between incontinence and undiagnosed urinary tract infections (UTIs). Further, clinical observation and structured continence management led to the realisation that urinary incontinence often improved, or resolved completely, after treatment with antibiotics. In 2009 a small study found that 30% of admitted rehabilitation patients had an undiagnosed UTI, with the majority admitted post-orthopaedic fracture. We suspected that the frequent use of indwelling urinary catheters (IDCs) in the orthopaedic environment may have been a contributing factor. Therefore, a second, more thorough, study was commenced in 2010 and completed in 2011. Aim The aim of this study was to identify what proportion of patients were admitted to one rehabilitation unit with an undiagnosed UTI over a 12-month period. We wanted to identify and highlight the presence of known risk factors associated with UTI and determine whether urinary incontinence was associated with the presence of UTI. Methods Data were collected from every patient that was admitted over a 12-month period (n=140). The majority of patients were over the age of 65 and had an orthopaedic fracture (36.4%) or stroke (27.1%). Mid-stream urine (MSU) samples, routinely collected and sent for culture and sensitivity as part of standard admission procedure, were used by the treating medical officer to detect the presence of UTI. A data collection sheet was developed, reviewed and trialled, before official data collection commenced. Data were collected as part of usual practice and collated by a research assistant. Inferential statistics were used to analyse the data. Results This study found that 25 (17.9%) of the 140 patients admitted to rehabilitation had an undiagnosed UTI, with a statistically significant association between prior presence of an IDC and the diagnosis of UTI. Urinary incontinence improved after the completion of treatment with antibiotics. Results further demonstrated a significant association between the confirmation of a UTI on culture and sensitivity and the absence of symptoms usually associated with UTI, such as burning or stinging on urination. Overall, this study suggests careful monitoring of urinary symptoms in patients admitted to rehabilitation, especially in patients with a prior IDC, is warranted.
Resumo:
Stereotactic radiosurgery treatments involve the delivery of very high doses for a small number of fractions. To date, there is limited data in terms of the skin dose for the very small field sizes used in these treatments. In this work, we determine relative surface doses for small size circular collimators as used in stereotactic radiosurgery treatments. Monte Carlo calculations were performed using the BEAMnrc code with a model of the Novalis 15 Trilogy linear accelerator and the BrainLab circular collimators. The surface doses were calculated at the ICRU skin dose depth of 70 m all using the 6 MV SRS x-ray beam. The calculated surface doses varied between 15 – 12% with decreasing values as the field size increased from 4 to 30 mm. In comparison, surface doses were measured using Gafchromic EBT3 film positioned at the surface of a Virtual Water phantom. The absolute agreement between calculated and measured surface doses was better than 2.5% which is well within the 20 uncertainties of the Monte Carlo calculations and the film measurements. Based on these results, we have shown that the Gafchromic EBT3 film is suitable for surface dose estimates in very small size fields as used in SRS.
Resumo:
Complex numbers are a fundamental aspect of the mathematical formalism of quantum physics. Quantum-like models developed outside physics often overlooked the role of complex numbers. Specifically, previous models in Information Retrieval (IR) ignored complex numbers. We argue that to advance the use of quantum models of IR, one has to lift the constraint of real-valued representations of the information space, and package more information within the representation by means of complex numbers. As a first attempt, we propose a complex-valued representation for IR, which explicitly uses complex valued Hilbert spaces, and thus where terms, documents and queries are represented as complex-valued vectors. The proposal consists of integrating distributional semantics evidence within the real component of a term vector; whereas, ontological information is encoded in the imaginary component. Our proposal has the merit of lifting the role of complex numbers from a computational byproduct of the model to the very mathematical texture that unifies different levels of semantic information. An empirical instantiation of our proposal is tested in the TREC Medical Record task of retrieving cohorts for clinical studies.
Resumo:
Visual information is central to several of the scientific disciplines. This paper studies how scientists working in a multidisciplinary field produce scientific evidence through building and manipulating scientific visualizations. Using ethnographic methods, we studied visualization practices of eight scientists working in the domain of tissue engineering research. Tissue engineering is an upcoming field of research that deals with replacing or regenerating human cells, tissues, or organs to restore or establish normal function. We spent 3 months in the field, where we recorded laboratory sessions of these scientists and used semi-structured interviews to get an insight into their visualization practices. From our results, we elicit two themes characterizing their visualization practices: multiplicity and physicality. In this article, we provide several examples of scientists’ visualization practices to describe these two themes and show that multimodality of such practices plays an important role in scientific visualization.
Resumo:
For the purpose of developing collaborative support in design studio environments, we have carried out ethnographic fieldwork in professional and academic product design studios. Our intention was to understand design practices beyond the productivity point of view and take into account the experiential, inspirational and aesthetical aspects of design practices. Using examples from our fieldwork, we develop our results around three broad themes by which design professionals support communication and collaboration: (1) use of artefacts, (2) use of space and (3) designerly practices. We use the results of our fieldwork for drawing implications for designing technologies for the design studio culture.
Resumo:
A quasi-experimental design (N=517) was used to investigate the effect on audience response to a supported charity if corporate support is featured in an advertisement. The results indicate that corporate support of a charity appears not to influence audience attitudes and donation intentions for the charity. A small portion of the audience may be motivated to donate when learning of a large corporate donation to the charity. The level of individual's favourability for the charity was the strongest predictor of their attitudes and intentions. Gender was also a predictor of more positive charity attitudes, with females reporting more positive attitudes than males for three of four charities. Managerial implications and areas for future research are discussed.
Resumo:
In this paper, load profile and operational goal are used to find optimal sizing of combined PV-energy storage for a future grid-connected residential building. As part of this approach, five operational goals are introduced and the annual cost for each operation goal has been assessed. Finally, the optimal sizing for combined PV-energy storage has been determined, using direct search method. In addition, sensitivity of the annual cost to different parameters has been analyzed.
Resumo:
Vibration characteristics of columns are influenced by their axial loads. Numerous methods have been developed to quantify axial load and deformation in individual columns based on their natural frequencies. However, these methods cannot be applied to columns in a structural framing system as the natural frequency is a global parameter of the entire framing system. This paper presents an innovative method to quantify axial deformations of columns in a structural framing system using its vibration characteristics, incorporating the influence of load tributary areas, boundary conditions and load migration among the columns.
Resumo:
Addressing the Crew Scheduling Problem (CSP) in transportation systems can be too complex to capture all details. The designed models usually ignore or simplify features which are difficult to formulate. This paper proposes an alternative formulation using a Mixed Integer Programming (MIP) approach to the problem. The optimisation model integrates the two phases of pairing generation and pairing optimisation by simultaneously sequencing trips into feasible duties and minimising total elapsed time of any duty. Crew scheduling constraints in which the crew have to return to their home depot at the end of the shift are included in the model. The flexibility of this model comes in the inclusion of the time interval of relief opportunities, allowing the crew to be relieved during a finite time interval. This will enhance the robustness of the schedule and provide a better representation of real-world conditions.
Resumo:
The Design Minds Refresh Toolkit was one of six K7-12 secondary school design toolkits commissioned by the State Library of Queensland (SLQ) Asia Pacific Design Library (APDL), to facilitate the delivery of the Stage 1 launch of its Design Minds online platform (www.designminds.org.au) partnership initiative with Queensland Government Arts Queensland and the Smithsonian Cooper-Hewitt National Design Museum, on June 29, 2012. Design Minds toolkits are practical guides, underpinned by a combination of one to three of the Design Minds model phases of ‘Inquire’, ‘Ideate’ and ‘Implement’ (supported by at each stage with structured reflection), to enhance existing school curriculum and empower students with real life design exercises, within the classroom environment. Toolkits directly identify links to Naplan, National Curriculum, C2C and Professional Standards benchmarks, as well as the student capabilities of successful and creative 21st century citizens they seek to engender through design thinking. Inspired by ideas from a design project for second year Interior Design students at QUT School of Design, this toolkit explores, through five distinct exercises, different design tools and ways to approach the future design of environments (bathrooms) to facilitate the daily washing ritual, while addressing diverse and changing social, cultural, technological and environmental challenges. The Design Minds Refresh Toolkit particularly aims to promote ‘Lateral Thinking’ attitudes and empathy as an approach to create unusual and sustainable solutions to future problems that may affect our daily behavioural routines, and the spaces that facilitate them. More generally, it aims to facilitate awareness in young people, of the role of design in society and the value of design thinking skills in generating strategies to solve basic to complex systemic challenges, as well as to inspire post-secondary pathways and idea generation for education. The toolkit encourages students and teachers to develop sketching, making, communication, presentation and collaboration skills to improve their design process, as well as explore further inquiry (background research) to enhance the ideation exercises. Exercise 1 focuses on the ‘Inquire’ and ‘Ideate’ phases, Exercise 2 and 3 build on ideation skills, and Exercise 4 and 5 concentrate on the ‘Implement’ phase. Depending on the intensity of the focus, the unit of work could be developed over a 4-5 week program (approximately 10-12 x 60 minute lessons/workshops) or as smaller workshops treated as discrete learning experiences. The toolkit is available for public download from http://designminds.org.au/refresh/ on the Design Minds website. Exercise 2 (Other People’s Shoes) and Exercise 3 (The Future Bathroom) of the toolkit were used as content for the inaugural Design Minds Professional Development Workshop on June 28, 2012 to pre-launch the website to Queensland teachers.
Resumo:
The Design Minds The Big Picture Toolkit was one of six K7-12 secondary school design toolkits commissioned by the State Library of Queensland (SLQ) Asia Pacific Design Library (APDL), to facilitate the delivery of the Stage 1 launch of its Design Minds online platform (www.designminds.org.au) partnership initiative with Queensland Government Arts Queensland and the Smithsonian Cooper-Hewitt National Design Museum, on June 29, 2012. Design Minds toolkits are practical guides, underpinned by a combination of one to three of the Design Minds model phases of ‘Inquire’, ‘Ideate’ and ‘Implement’ (supported by at each stage with structured reflection), to enhance existing school curriculum and empower students with real life design exercises, within the classroom environment. Toolkits directly identify links to Naplan, National Curriculum, C2C and Professional Standards benchmarks, as well as the student capabilities of successful and creative 21st century citizens they seek to engender through design thinking. Inspired by the Unlimited: Designing for the Asia Pacific Generation Workshop 2010 (http://eprints.qut.edu.au/47762/), this toolkit explores, through three distinct exercises, ‘design for the other 90%’, addressing tools and approaches to diverse and changing social, cultural, technological and environmental challenges. The Design Minds The Big Picture Toolkit challenges students to be active agents for change and to think creatively and optimistically about solutions to future global issues that deliver social, economic and environmental benefits. More generally, it aims to facilitate awareness in young people, of the role of design in society and the value of design thinking skills in generating strategies to solve basic to complex systemic challenges, as well as to inspire post-secondary pathways and idea generation for education. The toolkit encourages students and teachers to develop sketching, making, communication, presentation and collaboration skills to improve their design process, as well as explore further inquiry (background research) to enhance the ideation exercises. Exercise 1 focuses on the ‘Inquire’ phase, Exercise 2 the ‘Inquire’ and ‘Ideate’ phases, and Exercise 3 concentrates on the ‘Implement’ phase. Depending on the intensity of the focus, the unit of work could be developed over a 4-5 week program (approximately 4-6 x 60 minute lessons/workshops) or as smaller workshops treated as discrete learning experiences. The toolkit is available for public download from http://designminds.org.au/the-big-picture/ on the Design Minds website.
Resumo:
The Design Minds Tomorrow’s Classroom Toolkit was one of six K7-12 secondary school design toolkits commissioned by the State Library of Queensland (SLQ) Asia Pacific Design Library (APDL), to facilitate the delivery of the Stage 1 launch of its Design Minds online platform (www.designminds.org.au) partnership initiative with Queensland Government Arts Queensland and the Smithsonian Cooper-Hewitt National Design Museum, on June 29, 2012. Design Minds toolkits are practical guides, underpinned by a combination of one to three of the Design Minds model phases of ‘Inquire’, ‘Ideate’ and ‘Implement’ (supported by at each stage with structured reflection), to enhance existing school curriculum and empower students with real life design exercises, within the classroom environment. Toolkits directly identify links to Naplan, National Curriculum, C2C and Professional Standards benchmarks, as well as the student capabilities of successful and creative 21st century citizens they seek to engender through design thinking. This toolkit explores, through four distinct exercises, different design tools and ways to approach the future design of environments (classrooms/schools) to facilitate the Reggio Emilia philosophy of learning, while addressing diverse and changing social, cultural, technological and environmental challenges. The Design Minds Tomorrow’s Classroom Toolkit encourages students to explore architecture and interior design, and to think about their (life-long) learning as a product of inspiring interactions with people and the environments around them, and that their potential role in contributing to both delightful and functional design solutions requires a deep understanding of the user experience. More generally, it aims to facilitate awareness in young people, of the role of design in society and the value of design thinking skills in generating strategies to solve basic to complex systemic challenges, as well as to inspire post-secondary pathways and idea generation for education. The toolkit encourages students and teachers to develop sketching, making, communication, presentation and collaboration skills to improve their design process, as well as explore further inquiry (background research) to enhance the ideation exercises. Exercise 1 focuses on the ‘Inquire’ and ‘Ideate’ phases, Exercise 2 on the ‘Inquire’, Exercise 3 builds on ideation skills, and Exercise 4 concentrates on the ‘Implement’ phase. Depending on the intensity of the focus, the unit of work could be developed over a 2-5 week program (approximately 4-10 x 60 minute lessons/workshops) or as smaller workshops treated as discrete learning experiences. The toolkit is available for public download from http://designminds.org.au/tomorrows-classroom/ on the Design Minds website. This toolkit inspired the authorship and facilitation of a 2-day design workshop entitled Learning Environment 2050 at John Paul College, Daisy Hill, Brisbane on the 15-16 August 2013. 120 Grade 7 students and their teachers, under the mentorship of two design academics, 3 QUT design students and a professional architect, as part of a QUT School of Design Project Week community engagement activity, explored the formulation of a participatory design brief for the redesign of the school’s Wesley Precinct (including classrooms, a sustainable farm and recreation areas).
Resumo:
In Chapters 1 through 9 of the book (with the exception of a brief discussion on observers and integral action in Section 5.5 of Chapter 5) we considered constrained optimal control problems for systems without uncertainty, that is, with no unmodelled dynamics or disturbances, and where the full state was available for measurement. More realistically, however, it is necessary to consider control problems for systems with uncertainty. This chapter addresses some of the issues that arise in this situation. As in Chapter 9, we adopt a stochastic description of uncertainty, which associates probability distributions to the uncertain elements, that is, disturbances and initial conditions. (See Section 12.6 for references to alternative approaches to model uncertainty.) When incomplete state information exists, a popular observer-based control strategy in the presence of stochastic disturbances is to use the certainty equivalence [CE] principle, introduced in Section 5.5 of Chapter 5 for deterministic systems. In the stochastic framework, CE consists of estimating the state and then using these estimates as if they were the true state in the control law that results if the problem were formulated as a deterministic problem (that is, without uncertainty). This strategy is motivated by the unconstrained problem with a quadratic objective function, for which CE is indeed the optimal solution (˚Astr¨om 1970, Bertsekas 1976). One of the aims of this chapter is to explore the issues that arise from the use of CE in RHC in the presence of constraints. We then turn to the obvious question about the optimality of the CE principle. We show that CE is, indeed, not optimal in general. We also analyse the possibility of obtaining truly optimal solutions for single input linear systems with input constraints and uncertainty related to output feedback and stochastic disturbances.We first find the optimal solution for the case of horizon N = 1, and then we indicate the complications that arise in the case of horizon N = 2. Our conclusion is that, for the case of linear constrained systems, the extra effort involved in the optimal feedback policy is probably not justified in practice. Indeed, we show by example that CE can give near optimal performance. We thus advocate this approach in real applications.
Resumo:
Cleaning of sugar mill evaporators is an expensive exercise. Identifying the scale components assists in determining which chemical cleaning agents would result in effective evaporator cleaning. The current methods (based on x-ray diffraction techniques, ion exchange/high performance liquid chromatography and thermogravimetry/differential thermal analysis) used for scale characterisation are difficult, time consuming and expensive, and cannot be performed in a conventional analytical laboratory or by mill staff. The present study has examined the use of simple descriptor tests for the characterisation of Australian sugar mill evaporator scales. Scale samples were obtained from seven Australian sugar mill evaporators by mechanical means. The appearance, texture and colour of the scale were noted before the samples were characterised using x-ray fluorescence and x-ray powder diffraction to determine the compounds present. A number of commercial analytical test kits were used to determine the phosphate and calcium contents of scale samples. Dissolution experiments were carried out on the scale samples with selected cleaning agents to provide relevant information about the effect the cleaning agents have on different evaporator scales. Results have shown that by simply identifying the colour and the appearance of the scale, the elemental composition and knowing from which effect the scale originates, a prediction of the scale composition can be made. These descriptors and dissolution experiments on scale samples can be used to provide factory staff with an on-site rapid process to predict the most effective chemicals for chemical cleaning of the evaporators.