965 resultados para distributed generations
Resumo:
The behaviour of single installations of solar energy systems is well understood; however, what happens at an aggregated location, such as a distribution substation, when output of groups of installations cumulate is not so well understood. This paper considers groups of installations attached to distributions substations on which the load is primarily commercial and industrial. Agent-based modelling has been used to model the physical electrical distribution system and the behaviour of equipment outputs towards the consumer end of the network. The paper reports the approach used to simulate both the electricity consumption of groups of consumers and the output of solar systems subject to weather variability with the inclusion of cloud data from the Bureau of Meteorology (BOM). The data sets currently used are for Townsville, North Queensland. The initial characteristics that indicate whether solar installations are cost effective from an electricity distribution perspective are discussed.
Resumo:
Given the paradigm of smart grid as the promising backbone for future network, this paper uses this paradigm to propose a new coordination approach for LV network based on distributed control algorithm. This approach divides the LV network into hierarchical communities where each community is controlled by a control agent. Different level of communication has been proposed for this structure to control the network in different operation modes.
Resumo:
Background Failure to convey time-critical information to team members during surgery diminishes members’ perception of the dynamic information relevant to their task, and compromises shared situational awareness. This research reports the dialog around clinical decisions made by team members in the time-pressured and high-risk context of surgery, and the impact of these communications on shared situational awareness. Methods Fieldwork methods were used to capture the dynamic integration of individual and situational elements in surgery that provided the backdrop for clinical decisions. Nineteen semi structured interviews were performed with 24 participants from anaesthesia, surgery, and nursing in the operating rooms of a large metropolitan hospital in Queensland, Australia. Thematic analysis was used. Results: The domain “coordinating decisions in surgery” was generated from textual data. Within this domain, three themes illustrated the dialog of clinical decisions, i.e., synchronizing and strategizing actions, sharing local knowledge, and planning contingency decisions based on priority. Conclusion Strategies used to convey decisions that enhanced shared situational awareness included the use of “self-talk”, closed-loop communications, and “overhearing” conversations that occurred at the operating table. Behaviours’ that compromised a team’s shared situational awareness included tunnelling and fixating on one aspect of the situation.
Resumo:
In this paper we investigate the distribution of the product of Rayleigh distributed random variables. Considering the Mellin-Barnes inversion formula and using the saddle point approach we obtain an upper bound for the product distribution. The accuracy of this tail-approximation increases as the number of random variables in the product increase.
Resumo:
The well-established under-frequency load shedding (UFLS) is deemed to be the last of effective remedial measures against a severe frequency decline of a power system. With the ever-increasing size of power systems and the extensive penetration of distributed generators (DGs) in power systems, the problem of developing an optimal UFLS strategy is facing some new challenges. Given this background, an optimal UFLS strategy for a distribution system with DGs and load static characteristics taken into consideration is developed. Based on the frequency and the rate of change of frequency, the presented strategy consists of several basic rounds and a special round. In the basic round, the frequency emergency can be alleviated by quickly shedding some loads. In the special round, the frequency security can be maintained, and the operating parameters of the distribution system can be optimized by adjusting the output powers of DGs and some loads. The modified IEEE 37-node test feeder is employed to demonstrate the essential features of the developed optimal UFLS strategy in the MATLAB/SIMULINK environment.
Resumo:
There is an increasing expectation that early childhood teachers will be pedagogical leaders, particularly in a global context of curriculum reform. This paper reports on the distributed leadership experiences of early childhood teachers’ during the 2003 Preparatory Year (Prep) trial in Queensland, Australia. In 2010, 13 of the first Prep teachers participated in interviews to discuss their definitions of leadership and reflect on the opportunities they had to lead curriculum development during and since the 2003 trial. Data were examined using a conceptual framework based on the work of Woods et al. (2004), with a focus on the structural and agential aspects of distributed leadership. Participants identified a range of contextual influences, challenges, skills and enabling strategies that illustrate the complexities in leading curriculum.
Resumo:
Secure communications in distributed Wireless Sensor Networks (WSN) operating under adversarial conditions necessitate efficient key management schemes. In the absence of a priori knowledge of post-deployment network configuration and due to limited resources at sensor nodes, key management schemes cannot be based on post-deployment computations. Instead, a list of keys, called a key-chain, is distributed to each sensor node before the deployment. For secure communication, either two nodes should have a key in common in their key-chains, or they should establish a key through a secure-path on which every link is secured with a key. We first provide a comparative survey of well known key management solutions for WSN. Probabilistic, deterministic and hybrid key management solutions are presented, and they are compared based on their security properties and re-source usage. We provide a taxonomy of solutions, and identify trade-offs in them to conclude that there is no one size-fits-all solution. Second, we design and analyze deterministic and hybrid techniques to distribute pair-wise keys to sensor nodes before the deployment. We present novel deterministic and hybrid approaches based on combinatorial design theory and graph theory for deciding how many and which keys to assign to each key-chain before the sensor network deployment. Performance and security of the proposed schemes are studied both analytically and computationally. Third, we address the key establishment problem in WSN which requires key agreement algorithms without authentication are executed over a secure-path. The length of the secure-path impacts the power consumption and the initialization delay for a WSN before it becomes operational. We formulate the key establishment problem as a constrained bi-objective optimization problem, break it into two sub-problems, and show that they are both NP-Hard and MAX-SNP-Hard. Having established inapproximability results, we focus on addressing the authentication problem that prevents key agreement algorithms to be used directly over a wireless link. We present a fully distributed algorithm where each pair of nodes can establish a key with authentication by using their neighbors as the witnesses.
Resumo:
This paper describes the implementation of the first portable, embedded data acquisition unit (BabelFuse) that is able to acquire and timestamp generic sensor data and trigger General Purpose I/O (GPIO) events against a microsecond-accurate wirelessly-distributed ‘global’ clock. A significant issue encountered when fusing data received from multiple sensors is the accuracy of the timestamp associated with each piece of data. This is particularly important in applications such as Simultaneous Localisation and Mapping (SLAM) where vehicle velocity forms an important part of the mapping algorithms; on fast-moving vehicles, even millisecond inconsistencies in data timestamping can produce errors which need to be compensated for. The timestamping problem is compounded in a robot swarm environment especially if non-deterministic communication hardware (such as IEEE-802.11-based wireless) and inaccurate clock synchronisation protocols are used. The issue of differing timebases makes correlation of data difficult and prevents the units from reliably performing synchronised operations or manoeuvres. By utilising hardware-assisted timestamping, clock synchronisation protocols based on industry standards and firmware designed to minimise indeterminism, an embedded data acquisition unit capable of microsecond-level clock synchronisation is presented.
Resumo:
In this paper, the shape design optimisation using morphing aerofoil/wing techniques, namely the leading and/or trailing edge deformation of a natural laminar flow RAE 5243 aerofoil is investigated to reduce transonic drag without taking into account of the piezo actuator mechanism. Two applications using a Multi-Objective Genetic Algorithm (MOGA)coupled with Euler and boundary analyser (MSES) are considered: the first example minimises the total drag with a lift constraint by optimising both the trailing edge actuator position and trailing edge deformation angle at a constant transonic Mach number (M! = 0.75)and boundary layer transition position (xtr = 45%c). The second example consists of finding reliable designs that produce lower mean total drag (μCd) and drag sensitivity ("Cd) at different uncertainty flight conditions based on statistical information. Numerical results illustrate how the solution quality in terms of mean drag and its sensitivity can be improved using MOGA software coupled with a robust design approach taking account of uncertainties (lift and boundary transition positions) and also how transonic flow over aerofoil/wing can be controlled to the best advantage using morphing techniques.
Resumo:
In Queensland, there is little research that speaks to the historical experiences of schooling. Aboriginal education remains a part of the silenced history of Aboriginal people. This thesis presents stories of schooling from Aboriginal people across three generations of adult storytellers. Elders, grandparents, and young parents involved in an early childhood urban playgroup were included. Stories from the children attending the playgroup were also welcomed. The research methodology involved narrative storywork. This is culturally appropriate because Aboriginal stories connect the past with the present. The conceptual framework for the research draws on decolonising theory. Typically, reports of Aboriginal schooling and outcomes position Aboriginal families and children within a deficit discourse. The issues and challenges faced by urban Murri families who have young children or children in school are largely unknown. This research allowed Aboriginal families to participate in an engaged dialogue about their childhood and offered opportunities to tell their stories of education. Key research questions were: What was the reality of school for different generations of Indigenous people? What beliefs and values are held about mainstream education for Indigenous children? What ideas are communicated about school across generations? Narratives from five elders, five grandparents, and five (urban) mothers of young Indigenous children are presented. The elders offer testimony on their recollected experiences of schooling in a mission, a Yumba school (fringe-dwellers’ camp), and country schools. Their stories also speak to the need to pass as non-indigenous and act as “white”. The next generation of storytellers are the grandparents and they speak to their lives as “stolen children”. The final story tellers are the Murri parents. They speak to the current and recent past of education, as well as their family experiences as they parent young children who are about to enter school or who are in the early years of school.
Resumo:
Severe power quality problems can arise when a large number of single-phase distributed energy resources (DERs) are connected to a low-voltage power distribution system. Due to the random location and size of DERs, it may so happen that a particular phase generates excess power than its load demand. In such an event, the excess power will be fed back to the distribution substation and will eventually find its way to the transmission network, causing undesirable voltage-current unbalance. As a solution to this problem, the article proposes the use of a distribution static compensator (DSTATCOM), which regulates voltage at the point of common coupling (PCC), thereby ensuring balanced current flow from and to the distribution substation. Additionally, this device can also support the distribution network in the absence of the utility connection, making the distribution system work as a microgrid. The proposals are validated through extensive digital computer simulation studies using PSCADTM
Resumo:
The control paradigms of the distributed generation (DG) sources in the smart grid are realised by either utilising virtual power plant (VPP) or by employing MicroGrid structures. Both VPP and MicroGrid are presented with the problem of control of power flow between their comprising DG sources. This study depicts this issue for VPP and proposes a novel and improved universal active and reactive power flow controllers for three-phase pulse width modulated voltage source inverters (PWM-VSI) operating in the VPP environment. The proposed controller takes into account all cases of R-X relationship, thus allowing it to function in systems operating at high, medium (MV) and low-voltage (LV) levels. Also proposed control scheme for the first time in an inverter control takes into account the capacitance of the transmission line which is an important factor to accurately represent medium length transmission lines. This allows the proposed control scheme to be applied in VPP structures, where DG sources can operate at MV LV levels over a short/medium length transmission line. The authors also conducted small signal stability analysis of the proposed controller and compared it against the small signal study of the existing controllers.
Resumo:
This thesis investigates and develops techniques for accurately detecting Internet-based Distributed Denial-of-Service (DDoS) Attacks where an adversary harnesses the power of thousands of compromised machines to disrupt the normal operations of a Web-service provider, resulting in significant down-time and financial losses. This thesis also develops methods to differentiate these attacks from similar-looking benign surges in web-traffic known as Flash Events (FEs). This thesis also addresses an intrinsic challenge in research associated with DDoS attacks, namely, the extreme scarcity of public domain datasets (due to legal and privacy issues) by developing techniques to realistically emulate DDoS attack and FE traffic.
Resumo:
Distributed Wireless Smart Camera (DWSC) network is a special type of Wireless Sensor Network (WSN) that processes captured images in a distributed manner. While image processing on DWSCs sees a great potential for growth, with its applications possessing a vast practical application domain such as security surveillance and health care, it suffers from tremendous constraints. In addition to the limitations of conventional WSNs, image processing on DWSCs requires more computational power, bandwidth and energy that presents significant challenges for large scale deployments. This dissertation has developed a number of algorithms that are highly scalable, portable, energy efficient and performance efficient, with considerations of practical constraints imposed by the hardware and the nature of WSN. More specifically, these algorithms tackle the problems of multi-object tracking and localisation in distributed wireless smart camera net- works and optimal camera configuration determination. Addressing the first problem of multi-object tracking and localisation requires solving a large array of sub-problems. The sub-problems that are discussed in this dissertation are calibration of internal parameters, multi-camera calibration for localisation and object handover for tracking. These topics have been covered extensively in computer vision literatures, however new algorithms must be invented to accommodate the various constraints introduced and required by the DWSC platform. A technique has been developed for the automatic calibration of low-cost cameras which are assumed to be restricted in their freedom of movement to either pan or tilt movements. Camera internal parameters, including focal length, principal point, lens distortion parameter and the angle and axis of rotation, can be recovered from a minimum set of two images of the camera, provided that the axis of rotation between the two images goes through the camera's optical centre and is parallel to either the vertical (panning) or horizontal (tilting) axis of the image. For object localisation, a novel approach has been developed for the calibration of a network of non-overlapping DWSCs in terms of their ground plane homographies, which can then be used for localising objects. In the proposed approach, a robot travels through the camera network while updating its position in a global coordinate frame, which it broadcasts to the cameras. The cameras use this, along with the image plane location of the robot, to compute a mapping from their image planes to the global coordinate frame. This is combined with an occupancy map generated by the robot during the mapping process to localised objects moving within the network. In addition, to deal with the problem of object handover between DWSCs of non-overlapping fields of view, a highly-scalable, distributed protocol has been designed. Cameras that follow the proposed protocol transmit object descriptions to a selected set of neighbours that are determined using a predictive forwarding strategy. The received descriptions are then matched at the subsequent camera on the object's path using a probability maximisation process with locally generated descriptions. The second problem of camera placement emerges naturally when these pervasive devices are put into real use. The locations, orientations, lens types etc. of the cameras must be chosen in a way that the utility of the network is maximised (e.g. maximum coverage) while user requirements are met. To deal with this, a statistical formulation of the problem of determining optimal camera configurations has been introduced and a Trans-Dimensional Simulated Annealing (TDSA) algorithm has been proposed to effectively solve the problem.
Resumo:
This project was a step forward in developing intrusion detection systems in distributed environments such as web services. It investigates a new approach of detection based on so-called "taint-marking" techniques and introduces a theoretical framework along with its implementation in the Linux kernel.