962 resultados para diffuse double layer


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this letter, a dual circular polarized steering antenna for satellite communications in X-band is presented. This antenna consists of printed elements grouped in an array, able to work from 7.25 up to 8.4 GHz in both polarizations: left-handed circular polarization (LHCP) and right-handed circular polarization (RHCP). The module antenna is compact, with narrow beamwidth, and reaches a gain of 16 dBi. It has the capability to steer in elevation to and electronically with a Butler matrix. In order to reduce the mutual coupling between adjacent patches, electromagnetic band-gap (EBG) structures are introduced. These EBGs combine double-layer and edge location via in order to reduce the size, without changing the low-permittivity substrate, and therefore maintaining the high radiation efficiency of the antenna.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Double layer and edge-location via techniques are combined for electromagnetic band gap (EBG) size reduction. The study of the required number of elements and their dimensions is carried out in order to suppress the surface wave propagation modes and consequently to reduce the mutual coupling between radiating elements in low-permittivity substrates. By applying these techniques, the size of the EBG mushroom is reduced by 30%; however, the bandwidth operation maintains its value, and these structures can be integrated between radiating elements in broad bandwidth antennas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A theoretical model for the steady-state response of anodic contactors that emit a plasma current Ii and collect electrons from a collisionless, unmagnetized plasma is presented. The use of a (kinetic) monoenergetic population for the attracted species, well known in passive probe theory, gives both accuracy and tractability to the theory. The monoenergetic population is proved to behave like an isentropic fluid with radial plus centripetal motion, allowing direct comparisons with ad hoc fluid models. Also, a modification of the original monoenergetic equations permits analysis of contactors operating in orbit-limited conditions. Besides that, the theory predicts that, only for plasma emissions above certain threshold current a presheath/double layer/core structure for the potential is formed (the core mode), while for emissions below that threshold, a plasma contactor behaves exactly as a positive-ion emitter with a presheath/sheath structure (the no-core mode). Ion emitters are studied as a particular case. Emphasis is placed on obtaining dimensionless charts and approximate asymptotic laws of the current-voltage characteristic.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new material, C12A7 : electride, which might present a work function as low as 0.6 eV and moderately high temperature stability, was recently proposed as coating for floating bare tethers. Arising from heating under space operation, current is emitted by thermionic emission along a thus coated cathodic segment. A preliminary study on the space-charge-limited (SCL) double layer in front of the cathodic segment is presented using Langmuir’s SCL electron current between cylindrical electrodes and orbital-motion-limited ion-collection sheath. A detailed calculation of current and bias profiles along the entire tether length is carried out with ohmic effects and the transition from SCL to full Richardson-Dushman emission included. Analysis shows that in the simplest drag mode, under typical orbital and tether conditions, thermionic emission leads to a short cathodic section and may eliminate the need for an active cathodic device and its corresponding gas feed requirements and power subsystem, which results in a truly “propellant-less” tether system for such basic applications as de-orbiting low earth orbit satellites.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Esta tesis presenta un análisis teórico del funcionamiento de toberas magnéticas para la propulsión espacial por plasmas. El estudio está basado en un modelo tridimensional y bi-fluido de la expansión supersónica de un plasma caliente en un campo magnético divergente. El modelo básico es ampliado progresivamente con la inclusión de términos convectivos dominantes de electrones, el campo magnético inducido por el plasma, poblaciones electrónicas múltiples a distintas temperaturas, y la capacidad de integrar el flujo en la región de expansión lejana. La respuesta hiperbólica del plasma es integrada con alta precisión y eficiencia haciendo uso del método de las líneas características. Se realiza una caracterización paramétrica de la expansión 2D del plasma en términos del grado de magnetización de iones, la geometría del campo magnético, y el perfil inicial del plasma. Se investigan los mecanismos de aceleración, mostrando que el campo ambipolar convierte la energía interna de electrones en energía dirigida de iones. Las corrientes diamagnéticas de Hall, que pueden hallarse distribuidas en el volumen del plasma o localizadas en una delgada capa de corriente en el borde del chorro, son esenciales para la operación de la tobera, ya que la fuerza magnética repulsiva sobre ellas es la encargada de confinar radialmente y acelerar axialmente el plasma. El empuje magnético es la reacción a esta fuerza sobre el motor. La respuesta del plasma muestra la separación gradual hacia adentro de los tubos de iones respecto de los magnéticos, lo cual produce la formación de corrientes eléctricas longitudinales y pone el plasma en rotación. La ganancia de empuje obtenida y las pérdidas radiales de la pluma de plasma se evalúan en función de los parámetros de diseño. Se analiza en detalle la separación magnética del plasma aguas abajo respecto a las líneas magnéticas (cerradas sobre sí mismas), necesaria para la aplicación de la tobera magnética a fines propulsivos. Se demuestra que tres teorías existentes sobre separación, que se fundamentan en la resistividad del plasma, la inercia de electrones, y el campo magnético que induce el plasma, son inadecuadas para la tobera magnética propulsiva, ya que producen separación hacia afuera en lugar de hacia adentro, aumentando la divergencia de la pluma. En su lugar, se muestra que la separación del plasma tiene lugar gracias a la inercia de iones y la desmagnetización gradual del plasma que tiene lugar aguas abajo, que permiten la separación ilimitada del flujo de iones respecto a las líneas de campo en condiciones muy generales. Se evalúa la cantidad de plasma que permanece unida al campo magnético y retorna hacia el motor a lo largo de las líneas cerradas de campo, mostrando que es marginal. Se muestra cómo el campo magnético inducido por el plasma incrementa la divergencia de la tobera magnética y por ende de la pluma de plasma en el caso propulsivo, contrariamente a las predicciones existentes. Se muestra también cómo el inducido favorece la desmagnetización del núcleo del chorro, acelerando la separación magnética. La hipótesis de ambipolaridad de corriente local, común a varios modelos de tobera magnética existentes, es discutida críticamente, mostrando que es inadecuada para el estudio de la separación de plasma. Una inconsistencia grave en la derivación matemática de uno de los modelos más aceptados es señalada y comentada. Incluyendo una especie adicional de electrones supratérmicos en el modelo, se estudia la formación y geometría de dobles capas eléctricas en el interior del plasma. Cuando dicha capa se forma, su curvatura aumenta cuanto más periféricamente se inyecten los electrones supratérmicos, cuanto menor sea el campo magnético, y cuanto más divergente sea la tobera magnética. El plasma con dos temperaturas electrónicas posee un mayor ratio de empuje magnético frente a total. A pesar de ello, no se encuentra ninguna ventaja propulsiva de las dobles capas, reforzando las críticas existentes frente a las propuestas de estas formaciones como un mecanismo de empuje. Por último, se presenta una formulación general de modelos autosemejantes de la expansión 2D de una pluma no magnetizada en el vacío. El error asociado a la hipótesis de autosemejanza es calculado, mostrando que es pequeño para plumas hipersónicas. Tres modelos de la literatura son particularizados a partir de la formulación general y comparados. Abstract This Thesis presents a theoretical analysis of the operation of magnetic nozzles for plasma space propulsion. The study is based on a two-dimensional, two-fluid model of the supersonic expansion of a hot plasma in a divergent magnetic field. The basic model is extended progressively to include the dominant electron convective terms, the plasma-induced magnetic field, multi-temperature electron populations, and the capability to integrate the plasma flow in the far expansion region. The hyperbolic plasma response is integrated accurately and efficiently with the method of the characteristic lines. The 2D plasma expansion is characterized parametrically in terms of the ion magnetization strength, the magnetic field geometry, and the initial plasma profile. Acceleration mechanisms are investigated, showing that the ambipolar electric field converts the internal electron energy into directed ion energy. The diamagnetic electron Hall current, which can be distributed in the plasma volume or localized in a thin current sheet at the jet edge, is shown to be central for the operation of the magnetic nozzle. The repelling magnetic force on this current is responsible for the radial confinement and axial acceleration of the plasma, and magnetic thrust is the reaction to this force on the magnetic coils of the thruster. The plasma response exhibits a gradual inward separation of the ion streamtubes from the magnetic streamtubes, which focuses the jet about the nozzle axis, gives rise to the formation of longitudinal currents and sets the plasma into rotation. The obtained thrust gain in the magnetic nozzle and radial plasma losses are evaluated as a function of the design parameters. The downstream plasma detachment from the closed magnetic field lines, required for the propulsive application of the magnetic nozzle, is investigated in detail. Three prevailing detachment theories for magnetic nozzles, relying on plasma resistivity, electron inertia, and the plasma-induced magnetic field, are shown to be inadequate for the propulsive magnetic nozzle, as these mechanisms detach the plume outward, increasing its divergence, rather than focusing it as desired. Instead, plasma detachment is shown to occur essentially due to ion inertia and the gradual demagnetization that takes place downstream, which enable the unbounded inward ion separation from the magnetic lines beyond the turning point of the outermost plasma streamline under rather general conditions. The plasma fraction that remains attached to the field and turns around along the magnetic field back to the thruster is evaluated and shown to be marginal. The plasmainduced magnetic field is shown to increase the divergence of the nozzle and the resulting plasma plume in the propulsive case, and to enhance the demagnetization of the central part of the plasma jet, contrary to existing predictions. The increased demagnetization favors the earlier ion inward separation from the magnetic field. The local current ambipolarity assumption, common to many existing magnetic nozzle models, is critically discussed, showing that it is unsuitable for the study of plasma detachment. A grave mathematical inconsistency in a well-accepted model, related to the acceptance of this assumption, is found out and commented on. The formation and 2D shape of electric double layers in the plasma expansion is studied with the inclusion of an additional suprathermal electron population in the model. When a double layer forms, its curvature is shown to increase the more peripherally suprathermal electrons are injected, the lower the magnetic field strength, and the more divergent the magnetic nozzle is. The twoelectron- temperature plasma is seen to have a greater magnetic-to-total thrust ratio. Notwithstanding, no propulsive advantage of the double layer is found, supporting and reinforcing previous critiques to their proposal as a thrust mechanism. Finally, a general framework of self-similar models of a 2D unmagnetized plasma plume expansion into vacuum is presented and discussed. The error associated with the self-similarity assumption is calculated and shown to be small for hypersonic plasma plumes. Three models of the literature are recovered as particularizations from the general framework and compared.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vicinal Ge(100) is the common substrate for state of the art multi-junction solar cells grown by metal-organic vapor phase epitaxy (MOVPE). While triple junction solar cells based on Ge(100) present efficiencies mayor que 40%, little is known about the microscopic III-V/Ge(100) nucleation and its interface formation. A suitable Ge(100) surface preparation prior to heteroepitaxy is crucial to achieve low defect densities in the III-V epilayers. Formation of single domain surfaces with double layer steps is required to avoid anti-phase domains in the III-V films. The step formation processes in MOVPE environment strongly depends on the major process parameters such as substrate temperature, H2 partial pressure, group V precursors [1], and reactor conditions. Detailed investigation of these processes on the Ge(100) surface by ultrahigh vacuum (UHV) based standard surface science tools are complicated due to the presence of H2 process gas. However, in situ surface characterization by reflection anisotropy spectroscopy (RAS) allowed us to study the MOVPE preparation of Ge(100) surfaces directly in dependence on the relevant process parameters [2, 3, 4]. A contamination free MOVPE to UHV transfer system [5] enabled correlation of the RA spectra to results from UHV-based surface science tools. In this paper, we established the characteristic RA spectra of vicinal Ge(100) surfaces terminated with monohydrides, arsenic and phosphorous. RAS enabled in situ control of oxide removal, H2 interaction and domain formation during MOVPE preparation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We show, through some examples, that chemical activation by alkaline hydroxides permits the preparation of activated carbons with tailored pore volume, pore size distribution, pore structure and surface chemistry, which are useful for their application as electrodes in supercapacitors. Examples are presented discussing the importance of each of these properties on the double layer capacitance, on the kinetics of the electric double-layer charge-discharge process and on the pseudo-capacitative contribution from the surface functional groups or the addition of a conducting polymer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The monoliths studied in this work show large specific surface areas (up to 1600 m2 g-1), high densities (up to 1.17 g cm-3) and high electrical conductivities (up to 9.5 S cm-1). They are microporous carbons with pore sizes up to 1.3 nm but most of them below 0.75 nm. They also show oxygen functionalities. The electrochemical behavior of the monoliths is studied in three-electrode cells with aqueous H2SO4 solution as electrolyte. This work deals with the contribution of the sulfate ions and protons to the specific capacitance of carbon monoliths having different surface areas and different contents of oxygen groups. Protons contribute with a pseudocapacitance (up to 152 F g-1) in addition to the double layer capacitance. Sulfate ions contribute with a double layer capacitance only. At the double layer, the capacitance of the sulfate ions (up to 291 F g-1) is slightly higher than that of protons (up to 251 F g-1); both capacitances increase as the surface area increases. The preference of protons to be electroadsorbed at the double layer and the broader voltage window of these ions account for their higher contribution (70 %) to the double layer capacitance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acid pretreatment of lignocellulosic biomass, required for bioethanol production, generates large amounts of by-products, such as lignin and hydrolyzed hemicellulose fractions, which have found so far very limited applications. In this work, we demonstrate how the recovered hemicellulose hydrolysis products can be effectively utilized as a precursor for the synthesis of functional carbon materials through hydrothermal carbonization (HTC). The morphology and chemical structure of the synthesized HTC carbons are thoroughly characterized to highlight their similarities with glucose-derived HTC carbons. Furthermore, two routes for introducing porosity within the HTC carbon structure are presented: i) silica nanoparticle hard-templating, which is shown to be a viable method for the synthesis of carbonaceous hollow spheres; and ii) KOH chemical activation. The synthesized activated carbons (ACs) show an extremely high porosity (pore volume≈1.0 cm3 g−1) mostly composed of micropores (90 % of total pore volume). Because of their favorable textural properties, the ACs are further tested as electrodes for supercapacitors, yielding very promising results (300 F g−1 at 250 mA g−1) and confirming the high suitability of KOH-activated HTC carbons derived from spruce and corncob hydrolysis products as materials for electric double layer supercapacitors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interfacial properties of Pt(111) single crystal electrodes have been investigated in the pH range 3 < pH < 5 in order to obtain information about the acidity of electrosorbed water. Proper experimental conditions are defined to avoid local pH changes while maintaining the absence of specifically adsorbed anions and preserving the cleanliness of the solution. For this purpose, buffer solutions resulting from mixtures of NaF and HClO4 are used. Total charge curves are obtained at different pHs from the integration of the voltammetric currents in combination with CO charge displacement experiments. Analysis of the composition of the interphase as a function of the pH provides information for the understanding of the notion of interfacial pH.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE The purpose of this study was to identify SD-OCT changes that correspond to leakage on fluorescein (FA) and indocyanine angiography (ICGA) and evaluate effect of half-fluence photodynamic therapy (PDT) on choroidal volume in chronic central serous choroidoretinopathy (CSC). METHODS Retrospective analysis of patients with chronic CSC who had undergone PDT. Baseline FA and ICGA images were overlaid on SD-OCT to identify OCT correlates of FA or ICGA hyperfluorescence. Choroidal volume was evaluated in a subgroup of eyes before and after PDT. RESULTS Twenty eyes were evaluated at baseline, of which seven eyes had choroidal volume evaluations at baseline and 3 months following PDT. SD-OCT changes corresponding to FA hyperfluorescence were subretinal fluid (73%), RPE microrip (50%), RPE double-layer sign (31%), RPE detachment (15%), and RPE thickening (8%). ICGA hyperfluoresence was correlated in 93% with hyperreflective spots in the superficial choroid. Choroidal volume decreased from 9.35 ± 1.99 to 8.52 ± 1.92 and 8.04 ± 1.7 mm(3) (at 1 and 3 months post PDT, respectively, p ≤ 0.001). CONCLUSIONS We identified specific OCT findings that correlate with FA and ICGA leakage sites. SD-OCT is a valuable tool to localize CSC lesions and may be useful to guide PDT treatment. Generalized choroidal volume decrease occurs following PDT and extends beyond PDT treatment site.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ordered mesoporous materials show great importance in energy, environmental, and chemical engineering. The diffusion of guest species in mesoporous networks plays an important role in these applications, especially for energy storage, such as supercapacitors based on ordered mesoporous carbons ( OMCs). The ion diffusion behavior in two different 2-D hexagonal OMCs was investigated by using cyclic voltametry and electrochemical impedance spectroscopy. In addition, transmission electron microscopy, small-angle X-ray diffraction, and nitrogen cryosorption methods were used to study the pore structure variations of these two OMCs. It was found that, for the OMC with defective pore channels ( termed as pore packing defects), the gravimetric capacitance was greatly decayed when the voltage scan rate was increased. The experimental results suggest that, for the ion diffusion in 2-D hexagonal OMCs with similar mesopore size distribution, the pore packing defect is a dominant dynamic factor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The work described in this thesis is an attempt to provide improved understanding of the effects of several factors affecting diffusion in hydrated cement pastes and to aid the prediction of ionic diffusion processes in cement-based materials. Effect of pore structure on diffusion was examined by means of comparative diffusion studies of quaternary ammonium ions with different ionic radii. Diffusivities of these ions in hydrated pastes of ordinary portland cement with or without addition of fly ash were determined by a quasi-steady state technique. The restriction of the pore geometry on diffusion was evaluated from the change of diffusivity in response to the change of ionic radius. The pastes were prepared at three water-cement ratios, 0.35, 0.50 and 0.65. Attempts were made to study the effect of surface charge or the electrochemical double layer at the pore/solution interface on ionic diffusion. An approach was to evaluate the zeta potentials of hydrated cement pastes through streaming potential measurements. Another approach was the comparative studies of the diffusion kinetics of chloride and dissolved oxygen in hydrated pastes of ordinary portland cement with addition of 0 and 20% fly ash. An electrochemical technique for the determination of oxygen diffusivity was also developed. Non-steady state diffusion of sodium potassium, chloride and hydroxyl ions in hydrated ordinary portland cement paste of water-cement ratio 0.5 was studied with the aid of computer-modelling. The kinetics of both diffusion and ionic binding were considered for the characterization of the concentration profiles by Fick's first and second laws. The effect of the electrostatic interactions between ions on the overall diffusion rates was also considered. A general model concerning the prediction of ionic diffusion processes in cement-based materials has been proposed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polyethylene (a 1:1 blend of m-LLDPE and z-LLDPE) double layer silicate clay nanocomposites were prepared by melt extrusion using a twin screw extruder. Maleic anhydride grafted polyethylene (PEgMA) was used as a compatibiliser to enhance the dispersion of two organically modified monmorilonite clays (OMMT): Closite 15A (CL15) and nanofill SE 3000 (NF), and natural montmorillonite (NaMMT). The clay dispersion and morphology obtained in the extruded nanocomposite samples were fully characterised both after processing and during photo-oxidation by a number of complementary analytical techniques. The effects of the compatibiliser, the organoclay modifier (quartenary alkyl ammonium surfactant) and the clays on the behaviour of the nanocomposites during processing and under accelerated weathering conditions were investigated. X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), rheometry and attenuated reflectance spectroscopy (ATR-FTIR) showed that the nanocomposite structure obtained is dependent on the type of clay used, the presence or absence of a compatibiliser and the environment the samples are exposed to. The results revealed that during processing PE/clay nanocomposites are formed in the presence of the compatibiliser PEgMA giving a hybrid exfoliated and intercalated structures, while microcomposites were obtained in the absence of PEgMA; the unmodified NaMMT-containing samples showed encapsulated clay structures with limited extent of dispersion in the polymer matrix. The effect of processing on the thermal stability of the OMMT-containing polymer samples was determined by measuring the additional amount of vinyl-type unsaturation formed due to a Hoffman elimination reaction that takes place in the alkyl ammonium surfactant of the modified clay at elevated temperatures. The results indicate that OMMT is responsible for the higher levels of unsaturation found in OMMT-PE samples when compared to both the polymer control and the NaMMT-PE samples and confirms the instability of the alkyl ammonium surfactant during melt processing and its deleterious effects on the durability aspects of nanocomposite products. The photostability of the PE/clay nanocomposites under accelerated weathering conditions was monitored by following changes in their infrared signatures and mechanical properties. The rate of photo-oxidation of the compatibilised PE/PEgMA/OMMT nanocomposites was much higher than that of the PE/OMMT (in absence of PEgMA) counterparts, the polymer controls and the PE–NaMMT sample. Several factors have been observed that can explain the difference in the photo-oxidative stability of the PE/clay nanocomposites including the adverse role played by the thermal decomposition products of the alkyl ammonium surfactant, the photo-instability of PEgMA, unfavourable interactions between PEgMA and products formed in the polymer as a consequence of the degradation of the surfactant on the clay, as well as a contribution from a much higher extent of exfoliated structures, determined by TEM, formed with increasing UV-exposure times.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new generalized sphere decoding algorithm is proposed for underdetermined MIMO systems with fewer receive antennas N than transmit antennas M. The proposed algorithm is significantly faster than the existing generalized sphere decoding algorithms. The basic idea is to partition the transmitted signal vector into two subvectors x and x with N - 1 and M - N + 1 elements respectively. After some simple transformations, an outer layer Sphere Decoder (SD) can be used to choose proper x and then use an inner layer SD to decide x, thus the whole transmitted signal vector is obtained. Simulation results show that Double Layer Sphere Decoding (DLSD) has far less complexity than the existing Generalized Sphere Decoding (GSDs).