998 resultados para differential scanning calorimeters


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The salicylato complex of cobalt was synthesized and its structure established to be [Co(sal)2] · 4 H2O, where, sal =, from elemental analysis, IR spectroscopy, magnetic susceptibility, cryoscopy and conductivity. The X-ray diffractogram of the complex has been given. Thermal decomposition has been studied in air by thermogravimetry (TG), differential thermal analysis and differential scanning calorimetry. TG shows three main steps of decomposition. The intermediates formed at various stages were collected and analysed. From the TG results and chemical analysis of the intermediates, a mechanism has been proposed for the thermal decomposition of the complex, leading to the oxide formation in the final stage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mutual influence of the components on the crystallization behaviour of polyblends, namely, isotactic polybutene-1 (PB) with low-density and high-density polyethylene (LDPE and HDPE), has been studied using techniques such as differential scanning calorimetry, infra-red spectroscopy, wide-angle X-ray diffraction, scanning electron microscopy, etc. Each component in the blend is observed to crystallize independently. There is phase separation and incompatibility, as shown from tensile properties and scanning electron microscopic observation of the fracture surface of the blend. For HDPE-PE blends (<30% HDPE), unusual form I′ crystals of PB are observed along with the usual form II.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The thermal degradation of polystyrene peroxide was carried out using differential scanning calorimetry. The activation energy (E) was found to be 136 kJ mole–1 at all extents of decomposition. TheE value was found to correspond to-O-O-dissociation. The order of reaction was found to decrease from 2 to 1 as the decomposition progresse.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study investigated the potato starches and polyols which were used to prepare edible films. The amylose content and the gelatinization properties of various potato starches extracted from different potato cultivars were determined. The amylose content of potato starches varied between 11.9 and 20.1%. Onset temperatures of gelatinization of potato starches in excess water varied independently of the amylose content from 58 to 61°C determined using differential scanning calorimetry (DSC). The crystallinity of selected native starches with low, medium and high amylose content was determined by X-ray diffraction. The relative crystallinity was found to be around 10 13% in selected native potato starches containing 13 17% water. The glass transition temperature, crystallization melting behavior and relaxations of polyols, erythritol, sorbitol and xylitol, were determined using (DSC), dielectric analysis (DEA) and dynamic mechanical analysis (DMA). The glass transition temperatures of xylitol and sorbitol decreased as a result of water plasticization. Anhydrous amorphous erythritol crystallized rapidly. Edible films were obtained from solutions containing gelatinized starch, plasticizer (polyol or binary polyol mixture) and water by casting and evaporating water at 35°C. The present study investigated effects of plasticizer type and content on physical and mechanical properties of edible films stored at various relative water vapor pressures (RVP). The crystallinity of edible films with low, medium and high amylose content was determined by X-ray diffraction and they were found to be practically amorphous. Water sorption and water vapor permeability (WVP) of films was affected by the type and content of plasticizer. Water vapor permeability of films increased with increasing plasticizer content and storage RVP. Generally, Young's modulus and tensile strength decreased with increasing plasticizer and water content with a concurrent increase in elongation at break of films. High contents of xylitol and sorbitol resulted in changes in physical and mechanical properties of films probably due to phase separation and crystallization of xylitol and sorbitol which was not observed when binary polyol mixtures were used as plasticizers. The mechanical properties and the water vapor permeability (WVP) of the films were found to be independent of the amylose content.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Temperature dependent synchrotron x-ray powder diffraction, differential scanning calorimetry, and magnetic measurements were performed on Ni2+xMn1-xGa (x=0.20 and 0.35) magnetic shape memory alloys. For x=0.20, though the monoclinic phase is thermodynamically stable, a trace of residual stress can stabilize a tetragonal phase. The residual-stress-induced tetragonal phase transforms to the cubic austenite phase over an unusually large temperature range (348 K < T < 693 K), suggesting extremely slow kinetics of transformation. In contrast to x=0.20, the thermodynamically stable phase of x=0.35 is tetragonal and this composition exhibits the usual features of a reversible martensitic transformation. The results suggest that for x=0.20 the monoclinic and tetragonal phases are nearly degenerate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Surface activity of solution deposited (SD) amorphous films of As2S3 has been investigated. Silver and copper are readily deposited on such films from appropriate aqueous ionic solutions. The metals diffuse into the films upon irradiation with energetic photons. Structure and properties of SD films have been investigated using electron microscopy, optical spectroscopy and differential scanning calorimetry. The amorphous films tend to crystallize upon metal diffusion. The stability of amorphous films, the deposition of metals on their active surfaces and the photo-induced diffusion may all be attributed to the presence or production of charged defects in amorphous chalcogenide films.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lithium caesium sulphate has been reported to undergo a phase transition from the room temperature orthorhombic phase with space groupP cmn to a final phase with space groupP 22/n. Though a sharp anomaly in its physical properties has been found at 202.0;K, it was found that there was a need for careful investigations in the vicinity of 240 and 210.0;K. Since the changes in the crystal structure involve primarily a rotation of the SO4 tetrahedron about thec-axis and as this may be reflected both in the intensity and polarisation of the internal as well as external phonon modes, the laser Raman spectra of oriented single crystals of LiCsSO4 at different temperatures were investigated. For correlation and definite identification of the spectral features, its infrared absorption spectrum was also studied. An analysis of the intensities and polarizations of the internal modes of the sulphate ions reveals the change in symmetry of the crystal. The integrated intensity and peak height of thev 1 line, plotted against temperature show anomalous peaks in the region of the phase transition. Differential scanning calorimetric study gives the enthalpy change ΔH across the phase transition to be 0.213 kJ/mol.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transparent glasses in the composition BaO-0.5Li(2)O-4.5B(2)O(3) (BLBO) were fabricated via the conventional melt-quenching technique. X-ray powder diffraction combined with differential scanning calorimetric (DSC) studies carried out on the as-quenched samples confirmed their amorphous and glassy nature, respectively. The crystallization behavior of these glasses has been studied by isothermal and nonisothermal methods using DSC. Crystallization kinetic parameters were evaluated from the Johnson-Mehl-Avrami equation. The value of the Avrami exponent (n) was found to be 3.6 +/- 0.1, suggesting that the process involves three-dimensional bulk crystallization. The average value of activation energy associated with the crystallization of BLBO glasses was 317 +/- 10 kJ/mol. Transparent glass-ceramics were fabricated by controlled heat-treatment of the as-quenched glasses at 845 K/40 min. The dielectric constants for BLBO glasses and glass-ceramics in the 100 Hz-10 MHz frequency range were measured as a function of the temperature (300-925 K). The electrical relaxation and dc conductivity characteristics were rationalized using electric modulus formalism. The imaginary part of the electric modulus spectra was modeled using an approximate solution of the Kohlrausch-Williams-Watts relation. The temperature-dependent behavior of stretched exponent (beta) was discussed for the as-quenched and heat-treated BLBO glasses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This doctoral thesis deals with the syntheses of olefin homo- and copolymers using different kind of metallocene catalyst. Ethene, propene, 1-hexene, 1-hexadecene, vinylcyclohexane and phenylnorbornene were homo- or copolymerized with the catalysts. The unbridged benzyl substituted zirconium dichloride catalysts (1-4), ansa- bridged acenaphtyl substituted zirconium dichloride catalysts, ( 5, 6), rac- and meso-ethylene-bis(1-indenyl)zirconium dichlorides, (rac- and meso-8), rac-ethylene-bis(1-indenyl)hafnium dichloride, ( 12), bis(9-fluorenyl)hafnium dichloride (14 ) enantiomerically pure (R)- phenylethyl[(9-fluorenyl-1-indenyl)]ZrCl2, (11), 14 and asymmetric dimethylsilyl[(3-benzylindenyl-(2-methylbenzen[e]indenyl)] zirconium dichloride, (13), were prepared in our laboratory. Dimethylsilyl-bis(1-indenyl)zirconium dichloride, (9), isopropylidene(9-fluorenyl-cyclopentadienyl)zirconium dichloride, (10), and were obtained commercially. The solid-state structures of the catalysts rac- and meso-1 were determined by X-ray crystallography. Computational methods were used for the structure optimization of the catalyst rac- and meso-1 in order to compare the theoretical calculations with the experimental results. Polymerization experiments were conducted in a highly purified autoclave system using low pressures (< 5 bar) of gaseous monomers. The experiments were designed to attain the optimal catalytic activity and a uniform copolymer composition. The prepared homo- and copolymers were characterized by the gel permeation chromatography, GPC, differential scanning calorimetry, DSC, nuclear magnetic resonance, NMR, and Fourier transform infrared spectrometry, FTIR . Molar mass (Mw, Mn), molar mass distribution (Mw/Mn), tacticity, comonomer content, melting temperature, glass transition temperature, and end group structures and content were determined. A special attention was paid on the correlation of the polymer properties with the catalyst structures and polymerization conditions. An intramolecular phenyl coordination was found in phenyl substituted benzyl zirconocenes 1-3 explaining the decreased activity of the catalysts. Novel copolymers poly(propene-co-phenylnorbornene) and poly(propene co-vinylcyclohexane), were synthesized and high molar mass poly(ethene-co-1-hexene) and poly(ethene-co-1-hexadecene) copolymers with elastic properties were prepared. Activation of a hafnocene catalyst was studied with UV-Vis spectrometry and activation process for the synthesis of ultra high molar mass poly(1-hexene) was found out.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thermal behaviour of ammonium perchlorate-aluminium composites is studied using differential thermal analysis, thermogravimetry and differential scanning calorimetry. Electrical resistivity studies throw light on the mechanism of ammonium perchlorate decomposition at different aluminium contents. The differences observed in burning behaviour by earlier authors is explained in terms of porosity and thermal conductivity of the composite.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paper investigates the cause for the difference between differential scanning calorimetric results and mass spectrometric studies on polystyrene (PS) ammonium perchlorate (AP) propellants as related to the method of preparation of the propellant and the difference in experimental conditions by the use of mass spectrometry. Sufficient time is given for the product sublimates to interact with each other and attain equilibrium. It is shown that the propellant decomposition is a nonadditive phenomenon and that even a physical mixture of AP and PS does not yield additive decomposition products of its components. Results on the identification of a yellow compound containing chlorine in the bulk of the propellant suggest a condensed phase reaction. The occurrence of the reaction in the porous condensed phase of the propellant may explain the larger exothermicity of the propellant compared to the additive heats of decomposition of its components.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We incorporate various gold nanoparticles (AuNPs) capped with different ligands in two-dimensional films and three-dimensional aggregates derived from N-stearoyl-L-alanine and N-lauroyl-L-alanine, respectively. The assemblies of N-stearoyl-L-alanine afforded stable films at the air-water interface. More compact assemblies were formed upon incorporation of AuNPs in the air-water interface of N-stearoyl-L-alanine. We then examined the effects of incorporation of various AuNPs functionalized with different capping ligands in three-dimensional assemblies of N-lauroyl-L-alanine, a compound that formed a gel in hydrocarbons. The profound influence of nanoparticle incorporation into physical gels was evident from evaluation of various microscopic and bulk properties. The interaction of AuNPs with the gelator assembly was found to depend critically on the capping ligands protecting the Au surface of the gold nanoparticles. Transmission electron microscopy (TEM) showed a long-range directional assembly of certain AuNPs along the gel fibers. Scanning electron microscopy (SEM) images of the freeze-dried gels and nanocomposites indicate that the morphological transformation in the composite microstructures depends significantly on the capping agent of the nanoparticles. Differential scanning calorimetry (DSC) showed that gel formation from sol occurred at a lower temperature upon incorporation of AuNPs having capping ligands that were able to align and noncovalently interact with the gel fibers. Rheological studies indicate that the gel-nanoparticle composites exhibit significantly greater viscoelasticity compared to the native gel alone when the capping ligands are able to interact through interdigitation into the gelator assembly. Thus, it was possible to define a clear relationship between the materials and the molecular-level properties by means of manipulation of the information inscribed on the NP surface.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The importance of the study of thermal degradation of polymeric fuels arises from their role in the combustion of solid propellants. Estimation of the condensed-phase heat release during combustion can be facilitated by the knowledge of the enthalpy change associated with the polymer degradation process. Differential scanning calorimetry has been used to obtain enthalpy data. Kinetic studies on the polymeric degradation process have been carried out with the following objectives. The literature values of activation energies are quite diverse and differ from author to author. The present study has tried to locate possible reasons for the divergence in the reported activation energy values. A value of 30 kcal has been obtained and found to be independent of the technique employed. The present data on the kinetics support to chain-end initiation and unzipping process. The activation energies are further found to be independent of the atmosphere in which the degradation of polymer fuel is carried out. The degradation in air, N2, and O2 all yield a value of 30 kcal/mole for the activation energies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Poly(vinyl alcohol)-matrix reinforced with nanodiamond (ND) particles, with ND content up to 0.6 wt%, were synthesized. Characterization of the composites by transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS) reveal uniform distribution of the ND particles with no agglomeration in the matrix. Differential scanning calorimetry reveals that the crystallinity of the polymer increases with increasing ND content, indicating a strong interaction between ND and PVA. Nano-indentation technique was employed to assess the mechanical properties of composites. Results show that even small additions of ND lead to significant enhancement in the hardness and elastic modulus of PVA. Possible micromechanisms responsible for the enhancement of the mechanical properties are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An application that translates raw thermal melt curve data into more easily assimilated knowledge is described. This program, called ‘Meltdown’, performs a number of data remediation steps before classifying melt curves and estimating melting temperatures. The final output is a report that summarizes the results of a differential scanning fluorimetry experiment. Meltdown uses a Bayesian classification scheme, enabling reproducible identification of various trends commonly found in DSF datasets. The goal of Meltdown is not to replace human analysis of the raw data, but to provide a sensible interpretation of the data to make this useful experimental technique accessible to naïve users, as well as providing a starting point for detailed analyses by more experienced users.