946 resultados para diesel emissions
Resumo:
Smoke spikes occurring during transient engine operation have detrimental health effects and increase fuel consumption by requiring more frequent regeneration of the diesel particulate filter. This paper proposes a decision tree approach to real-time detection of smoke spikes for control and on-board diagnostics purposes. A contemporary, electronically controlled heavy-duty diesel engine was used to investigate the deficiencies of smoke control based on the fuel-to-oxygen-ratio limit. With the aid of transient and steady state data analysis and empirical as well as dimensional modeling, it was shown that the fuel-to-oxygen ratio was not estimated correctly during the turbocharger lag period. This inaccuracy was attributed to the large manifold pressure ratios and low exhaust gas recirculation flows recorded during the turbocharger lag period, which meant that engine control module correlations for the exhaust gas recirculation flow and the volumetric efficiency had to be extrapolated. The engine control module correlations were based on steady state data and it was shown that, unless the turbocharger efficiency is artificially reduced, the large manifold pressure ratios observed during the turbocharger lag period cannot be achieved at steady state. Additionally, the cylinder-to-cylinder variation during this period were shown to be sufficiently significant to make the average fuel-to-oxygen ratio a poor predictor of the transient smoke emissions. The steady state data also showed higher smoke emissions with higher exhaust gas recirculation fractions at constant fuel-to-oxygen-ratio levels. This suggests that, even if the fuel-to-oxygen ratios were to be estimated accurately for each cylinder, they would still be ineffective as smoke limiters. A decision tree trained on snap throttle data and pruned with engineering knowledge was able to use the inaccurate engine control module estimates of the fuel-to-oxygen ratio together with information on the engine control module estimate of the exhaust gas recirculation fraction, the engine speed, and the manifold pressure ratio to predict 94% of all spikes occurring over the Federal Test Procedure cycle. The advantages of this non-parametric approach over other commonly used parametric empirical methods such as regression were described. An application of accurate smoke spike detection in which the injection pressure is increased at points with a high opacity to reduce the cumulative particulate matter emissions substantially with a minimum increase in the cumulative nitrogrn oxide emissions was illustrated with dimensional and empirical modeling.
Resumo:
Internal combustion engines are, and will continue to be, a primary mode of power generation for ground transportation. Challenges exist in meeting fuel consumption regulations and emission standards while upholding performance, as fuel prices rise, and resource depletion and environmental impacts are of increasing concern. Diesel engines are advantageous due to their inherent efficiency advantage over spark ignition engines; however, their NOx and soot emissions can be difficult to control and reduce due to an inherent tradeoff. Diesel combustion is spray and mixing controlled providing an intrinsic link between spray and emissions, motivating detailed, fundamental studies on spray, vaporization, mixing, and combustion characteristics under engine relevant conditions. An optical combustion vessel facility has been developed at Michigan Technological University for these studies, with detailed tests and analysis being conducted. In this combustion vessel facility a preburn procedure for thermodynamic state generation is used, and validated using chemical kinetics modeling both for the MTU vessel, and institutions comprising the Engine Combustion Network international collaborative research initiative. It is shown that minor species produced are representative of modern diesel engines running exhaust gas recirculation and do not impact the autoignition of n-heptane. Diesel spray testing of a high-pressure (2000 bar) multi-hole injector is undertaken including non-vaporizing, vaporizing, and combusting tests, with sprays characterized using Mie back scatter imaging diagnostics. Liquid phase spray parameter trends agree with literature. Fluctuations in liquid length about a quasi-steady value are quantified, along with plume to plume variations. Hypotheses are developed for their causes including fuel pressure fluctuations, nozzle cavitation, internal injector flow and geometry, chamber temperature gradients, and turbulence. These are explored using a mixing limited vaporization model with an equation of state approach for thermopyhysical properties. This model is also applied to single and multi-component surrogates. Results include the development of the combustion research facility and validated thermodynamic state generation procedure. The developed equation of state approach provides application for improving surrogate fuels, both single and multi-component, in terms of diesel spray liquid length, with knowledge of only critical fuel properties. Experimental studies are coupled with modeling incorporating improved thermodynamic non-ideal gas and fuel
Resumo:
The purpose of this study is to provide a procedure to include emissions to the atmosphere resulting from the combustion of diesel fuel during dredging operations into the decision-making process of dredging equipment selection. The proposed procedure is demonstrated for typical dredging methods and data from the Illinois Waterway as performed by the U.S. Army Corps of Engineers, Rock Island District. The equipment included in this study is a 16-inch cutterhead pipeline dredge and a mechanical bucket dredge used during the 2005 dredging season on the Illinois Waterway. Considerable effort has been put forth to identify and reduce environmental impacts from dredging operations. Though environmental impacts of dredging have been studied no efforts have been applied to the evaluation of air emissions from comparable types of dredging equipment, as in this study. By identifying the type of dredging equipment with the lowest air emissions, when cost, site conditions, and equipment availability are comparable, adverse environmental impacts can be minimized without compromising the dredging project. A total of 48 scenarios were developed by varying the dredged material quantity, transport distance, and production rates. This produced an “envelope” of results applicable to a broad range of site conditions. Total diesel fuel consumed was calculated using standard cost estimating practices as defined in the U.S. Army Corps of Engineers Construction Equipment Ownership and Operating Expense Schedule (USACE, 2005). The diesel fuel usage was estimated for all equipment used to mobilize and/or operate each dredging crew for every scenario. A Limited Life Cycle Assessment (LCA) was used to estimate the air emissions from two comparable dredging operations utilizing SimaPro LCA software. An Environmental Impact Single Score (EISS) was the SimaPro output selected for comparison with the cost per CY of dredging, potential production rates, and transport distances to identify possible decision points. The total dredging time was estimated for each dredging crew and scenario. An average hourly cost for both dredging crews was calculated based on Rock Island District 2005 dredging season records (Graham 2007/08). The results from this study confirm commonly used rules of thumb in the dredging industry by indicating that mechanical bucket dredges are better suited for long transport distances and have lower air emissions and cost per CY for smaller quantities of dredged material. In addition, the results show that a cutterhead pipeline dredge would be preferable for moderate and large volumes of dredged material when no additional booster pumps are required. Finally, the results indicate that production rates can be a significant factor when evaluating the air emissions from comparable dredging equipment.
Resumo:
A diesel oxidation catalyst (DOC) with a catalyzed diesel particulate filter (CPF) is an effective exhaust aftertreatment device that reduces particulate emissions from diesel engines, and properly designed DOC-CPF systems provide passive regeneration of the filter by the oxidation of PM via thermal and NO2/temperature-assisted means under various vehicle duty cycles. However, controlling the backpressure on engines caused by the addition of the CPF to the exhaust system requires a good understanding of the filtration and oxidation processes taking place inside the filter as the deposition and oxidation of solid particulate matter (PM) change as functions of loading time. In order to understand the solid PM loading characteristics in the CPF, an experimental and modeling study was conducted using emissions data measured from the exhaust of a John Deere 6.8 liter, turbocharged and after-cooled engine with a low-pressure loop EGR system and a DOC-CPF system (or a CCRT® - Catalyzed Continuously Regenerating Trap®, as named by Johnson Matthey) in the exhaust system. A series of experiments were conducted to evaluate the performance of the DOC-only, CPF-only and DOC-CPF configurations at two engine speeds (2200 and 1650 rpm) and various loads on the engine ranging from 5 to 100% of maximum torque at both speeds. Pressure drop across the DOC and CPF, mass deposited in the CPF at the end of loading, upstream and downstream gaseous and particulate emissions, and particle size distributions were measured at different times during the experiments to characterize the pressure drop and filtration efficiency of the DOCCPF system as functions of loading time. Pressure drop characteristics measured experimentally across the DOC-CPF system showed a distinct deep-bed filtration region characterized by a non-linear pressure drop rise, followed by a transition region, and then by a cake-filtration region with steadily increasing pressure drop with loading time at engine load cases with CPF inlet temperatures less than 325 °C. At the engine load cases with CPF inlet temperatures greater than 360 °C, the deep-bed filtration region had a steep rise in pressure drop followed by a decrease in pressure drop (due to wall PM oxidation) in the cake filtration region. Filtration efficiencies observed during PM cake filtration were greater than 90% in all engine load cases. Two computer models, i.e., the MTU 1-D DOC model and the MTU 1-D 2-layer CPF model were developed and/or improved from existing models as part of this research and calibrated using the data obtained from these experiments. The 1-D DOC model employs a three-way catalytic reaction scheme for CO, HC and NO oxidation, and is used to predict CO, HC, NO and NO2 concentrations downstream of the DOC. Calibration results from the 1-D DOC model to experimental data at 2200 and 1650 rpm are presented. The 1-D 2-layer CPF model uses a ‘2-filters in series approach’ for filtration, PM deposition and oxidation in the PM cake and substrate wall via thermal (O2) and NO2/temperature-assisted mechanisms, and production of NO2 as the exhaust gas mixture passes through the CPF catalyst washcoat. Calibration results from the 1-D 2-layer CPF model to experimental data at 2200 rpm are presented. Comparisons of filtration and oxidation behavior of the CPF at sample load-cases in both configurations are also presented. The input parameters and selected results are also compared with a similar research work with an earlier version of the CCRT®, to compare and explain differences in the fundamental behavior of the CCRT® used in these two research studies. An analysis of the results from the calibrated CPF model suggests that pressure drop across the CPF depends mainly on PM loading and oxidation in the substrate wall, and also that the substrate wall initiates PM filtration and helps in forming a PM cake layer on the wall. After formation of the PM cake layer of about 1-2 µm on the wall, the PM cake becomes the primary filter and performs 98-99% of PM filtration. In all load cases, most of PM mass deposited was in the PM cake layer, and PM oxidation in the PM cake layer accounted for 95-99% of total PM mass oxidized during loading. Overall PM oxidation efficiency of the DOC-CPF device increased with increasing CPF inlet temperatures and NO2 flow rates, and was higher in the CCRT® configuration compared to the CPF-only configuration due to higher CPF inlet NO2 concentrations. Filtration efficiencies greater than 90% were observed within 90-100 minutes of loading time (starting with a clean filter) in all load cases, due to the fact that the PM cake on the substrate wall forms a very efficient filter. A good strategy for maintaining high filtration efficiency and low pressure drop of the device while performing active regeneration would be to clean the PM cake filter partially (i.e., by retaining a cake layer of 1-2 µm thickness on the substrate wall) and to completely oxidize the PM deposited in the substrate wall. The data presented support this strategy.
Resumo:
The emissions, filtration and oxidation characteristics of a diesel oxidation catalyst (DOC) and a catalyzed particulate filter (CPF) in a Johnson Matthey catalyzed continuously regenerating trap (CCRT ®) were studied by using computational models. Experimental data needed to calibrate the models were obtained by characterization experiments with raw exhaust sampling from a Cummins ISM 2002 engine with variable geometry turbocharging (VGT) and programmed exhaust gas recirculation (EGR). The experiments were performed at 20, 40, 60 and 75% of full load (1120 Nm) at rated speed (2100 rpm), with and without the DOC upstream of the CPF. This was done to study the effect of temperature and CPF-inlet NO2 concentrations on particulate matter oxidation in the CCRT ®. A previously developed computational model was used to determine the kinetic parameters describing the oxidation characteristics of HCs, CO and NO in the DOC and the pressure drop across it. The model was calibrated at five temperatures in the range of 280 – 465° C, and exhaust volumetric flow rates of 0.447 – 0.843 act-m3/sec. The downstream HCs, CO and NO concentrations were predicted by the DOC model to within ±3 ppm. The HCs and CO oxidation kinetics in the temperature range of 280 - 465°C and an exhaust volumetric flow rate of 0.447 - 0.843 act-m3/sec can be represented by one ’apparent’ activation energy and pre-exponential factor. The NO oxidation kinetics in the same temperature and exhaust flow rate range can be represented by ’apparent’ activation energies and pre-exponential factors in two regimes. The DOC pressure drop was always predicted within 0.5 kPa by the model. The MTU 1-D 2-layer CPF model was enhanced in several ways to better model the performance of the CCRT ®. A model to simulate the oxidation of particulate inside the filter wall was developed. A particulate cake layer filtration model which describes particle filtration in terms of more fundamental parameters was developed and coupled to the wall oxidation model. To better model the particulate oxidation kinetics, a model to take into account the NO2 produced in the washcoat of the CPF was developed. The overall 1-D 2-layer model can be used to predict the pressure drop of the exhaust gas across the filter, the evolution of particulate mass inside the filter, the particulate mass oxidized, the filtration efficiency and the particle number distribution downstream of the CPF. The model was used to better understand the internal performance of the CCRT®, by determining the components of the total pressure drop across the filter, by classifying the total particulate matter in layer I, layer II, the filter wall, and by the means of oxidation i.e. by O2, NO2 entering the filter and by NO2 being produced in the filter. The CPF model was calibrated at four temperatures in the range of 280 – 465 °C, and exhaust volumetric flow rates of 0.447 – 0.843 act-m3/sec, in CPF-only and CCRT ® (DOC+CPF) configurations. The clean filter wall permeability was determined to be 2.00E-13 m2, which is in agreement with values in the literature for cordierite filters. The particulate packing density in the filter wall had values between 2.92 kg/m3 - 3.95 kg/m3 for all the loads. The mean pore size of the catalyst loaded filter wall was found to be 11.0 µm. The particulate cake packing densities and permeabilities, ranged from 131 kg/m3 - 134 kg/m3, and 0.42E-14 m2 and 2.00E-14 m2 respectively, and are in agreement with the Peclet number correlations in the literature. Particulate cake layer porosities determined from the particulate cake layer filtration model ranged between 0.841 and 0.814 and decreased with load, which is about 0.1 lower than experimental and more complex discrete particle simulations in the literature. The thickness of layer I was kept constant at 20 µm. The model kinetics in the CPF-only and CCRT ® configurations, showed that no ’catalyst effect’ with O2 was present. The kinetic parameters for the NO2-assisted oxidation of particulate in the CPF were determined from the simulation of transient temperature programmed oxidation data in the literature. It was determined that the thermal and NO2 kinetic parameters do not change with temperature, exhaust flow rate or NO2 concentrations. However, different kinetic parameters are used for particulate oxidation in the wall and on the wall. Model results showed that oxidation of particulate in the pores of the filter wall can cause disproportionate decreases in the filter pressure drop with respect to particulate mass. The wall oxidation model along with the particulate cake filtration model were developed to model the sudden and rapid decreases in pressure drop across the CPF. The particulate cake and wall filtration models result in higher particulate filtration efficiencies than with just the wall filtration model, with overall filtration efficiencies of 98-99% being predicted by the model. The pre-exponential factors for oxidation by NO2 did not change with temperature or NO2 concentrations because of the NO2 wall production model. In both CPF-only and CCRT ® configurations, the model showed NO2 and layer I to be the dominant means and dominant physical location of particulate oxidation respectively. However, at temperatures of 280 °C, NO2 is not a significant oxidizer of particulate matter, which is in agreement with studies in the literature. The model showed that 8.6 and 81.6% of the CPF-inlet particulate matter was oxidized after 5 hours at 20 and 75% load in CCRT® configuration. In CPF-only configuration at the same loads, the model showed that after 5 hours, 4.4 and 64.8% of the inlet particulate matter was oxidized. The increase in NO2 concentrations across the DOC contributes significantly to the oxidation of particulate in the CPF and is supplemented by the oxidation of NO to NO2 by the catalyst in the CPF, which increases the particulate oxidation rates. From the model, it was determined that the catalyst in the CPF modeslty increases the particulate oxidation rates in the range of 4.5 – 8.3% in the CCRT® configuration. Hence, the catalyst loading in the CPF of the CCRT® could possibly be reduced without significantly decreasing particulate oxidation rates leading to catalyst cost savings and better engine performance due to lower exhaust backpressures.
Resumo:
Particulate matter (PM) emissions standards set by the US Environmental Protection Agency (EPA) have become increasingly stringent over the years. The EPA regulation for PM in heavy duty diesel engines has been reduced to 0.01 g/bhp-hr for the year 2010. Heavy duty diesel engines make use of an aftertreatment filtration device, the Diesel Particulate Filter (DPF). DPFs are highly efficient in filtering PM (known as soot) and are an integral part of 2010 heavy duty diesel aftertreatment system. PM is accumulated in the DPF as the exhaust gas flows through it. This PM needs to be removed by oxidation periodically for the efficient functioning of the filter. This oxidation process is also known as regeneration. There are 2 types of regeneration processes, namely active regeneration (oxidation of PM by external means) and passive oxidation (oxidation of PM by internal means). Active regeneration occurs typically in high temperature regions, about 500 - 600 °C, which is much higher than normal diesel exhaust temperatures. Thus, the exhaust temperature has to be raised with the help of external devices like a Diesel Oxidation Catalyst (DOC) or a fuel burner. The O2 oxidizes PM producing CO2 as oxidation product. In passive oxidation, one way of regeneration is by the use of NO2. NO2 oxidizes the PM producing NO and CO2 as oxidation products. The passive oxidation process occurs at lower temperatures (200 - 400 °C) in comparison to the active regeneration temperatures. Generally, DPF substrate walls are washcoated with catalyst material to speed up the rate of PM oxidation. The catalyst washcoat is observed to increase the rate of PM oxidation. The goal of this research is to develop a simple mathematical model to simulate the PM depletion during the active regeneration process in a DPF (catalyzed and non-catalyzed). A simple, zero-dimensional kinetic model was developed in MATLAB. Experimental data required for calibration was obtained by active regeneration experiments performed on PM loaded mini DPFs in an automated flow reactor. The DPFs were loaded with PM from the exhaust of a commercial heavy duty diesel engine. The model was calibrated to the data obtained from active regeneration experiments. Numerical gradient based optimization techniques were used to estimate the kinetic parameters of the model.
Resumo:
Renewable hydrocarbon biofuels are being investigated as possible alternatives to conventional liquid transportation fossil fuels like gasoline, kerosene (aviation fuel), and diesel. A diverse range of biomass feedstocks such as corn stover, sugarcane bagasse, switchgrass, waste wood, and algae, are being evaluated as candidates for pyrolysis and catalytic upgrading to produce drop-in hydrocarbon fuels. This research has developed preliminary life cycle assessments (LCA) for each feedstock-specific pathway and compared the greenhouse gas (GHG) emissions of the hydrocarbon biofuels to current fossil fuels. As a comprehensive study, this analysis attempts to account for all of the GHG emissions associated with each feedstock pathway through the entire life cycle. Emissions from all stages including feedstock production, land use change, pyrolysis, stabilizing the pyrolysis oil for transport and storage, and upgrading the stabilized pyrolysis oil to a hydrocarbon fuel are included. In addition to GHG emissions, the energy requirements and water use have been evaluated over the entire life cycle. The goal of this research is to help understand the relative advantages and disadvantages of the feedstocks and the resultant hydrocarbon biofuels based on three environmental indicators; GHG emissions, energy demand, and water utilization. Results indicate that liquid hydrocarbon biofuels produced through this pyrolysis-based pathway can achieve greenhouse gas emission savings of greater than 50% compared to petroleum fuels, thus potentially qualifying these biofuels under the US EPA RFS2 program. GHG emissions from biofuels ranged from 10.7-74.3 g/MJ from biofuels derived from sugarcane bagasse and wild algae at the extremes of this range, respectively. The cumulative energy demand (CED) shows that energy in every biofuel process is primarily from renewable biomass and the remaining energy demand is mostly from fossil fuels. The CED for biofuel range from 1.25-3.25 MJ/MJ from biofuels derived from sugarcane bagasse to wild algae respectively, while the other feedstock-derived biofuels are around 2 MJ/MJ. Water utilization is primarily from cooling water use during the pyrolysis stage if irrigation is not used during the feedstock production stage. Water use ranges from 1.7 - 17.2 gallons of water per kg of biofuel from sugarcane bagasse to open pond algae, respectively.
Resumo:
El presente trabajo se propone determinar la distribución de tamaño y número de partículas nanométricas provenientes de motores diésel con equipos embarcados en tráfico extraurbano. Para ello, se utilizaron equipos de medición de última generación en condiciones promedio de conducción en tráfico extraurbano por más de 800 km a lo largo del trayecto Madrid-Badajoz-Madrid mediante un vehículo característico del parque automotor español y se implementaron métodos novedosos y pioneros en el registro de este tipo de emisiones. Todo ello abre el camino para líneas de investigación y desarrollo que contribuirán a entender, dimensionar y cualificar el comportamiento de las partículas, así como su impacto en la calidad de vida de la población. El estudio hace dos grandes aportes al campo. Primero, permite registrar las emisiones en condiciones transitorias propias del tráfico real. Segundo, permite mantener controladas las condiciones de medición y evita la formación aleatoria de partículas provenientes de material volátil, gracias al sistema de adecuación de la muestra de gases de escape incorporado. Como resultado, se obtuvo una muestra abundante y confiable que permitió construir modelos matemáticos para calcular la emisión de partículas nanométricas, ultrafinas, finas y totales sobre las bases volumétrica, espacial y temporal en función de la pendiente del perfil orográfico de la carretera, siempre y cuando esté dentro del intervalo ±5.0%. Estos modelos de cálculo de emisiones reducen tanto los costos de experimentación como la complejidad de los equipos necesarios, y fundamentaron el desarrollo de la primera versión de una aplicación informática que calcula las partículas emitidas por un motor diésel en condiciones de tráfico extraurbano ("Partículas Emitidas por Motores Diésel, PEMDI). ABSTRACT The purpose of this research is to determine the distribution of size and number of nanometric particles that come from diesel engines by means of on-board equipment in extra-urban traffic. In order to do this, cutting-edge measuring equipment was used under average driving conditions in extra-urban traffic for more than 800 km along the Madrid-Badajoz-Madrid route using a typical vehicle from Spain's automotive population and innovative, groundbreaking registering methods for this type of emissions were used. All this paves the way for lines of research and development which should help understand, measure and characterize the behavior of such particles, as well as their impact in the quality of life of the general population. The study makes two important contributions to the field. First, it makes it possible to register emissions under transient conditions, which are characteristic to real traffic. Secondly, it provides a means to keep the measuring conditions under control and prevents the random formation of particles of volatile origin through the built-in adjustment system of the exhaust gas sample. As a result, an abundant and reliable sample was gathered, which enabled the building of mathematical models to estimate the emission of nanometric, ultrafine, fine and total particles on volumetric, spatial and temporal bases as a function of the orographic outline of the road within a ±5.0% range. These emission estimating models lower both the experimentation costs and the required equipment's complexity, and they provided the basis for the development of a first software application version that estimates the particles emitted from diesel engines under extra-urban traffic conditions (Partículas Emitidas por Motores Diésel, PEMDI).
Resumo:
Nowadays increasing fuel prices and upcoming pollutant emission regulations are becoming a growing concern for the shipping industry worldwide. While fuel prices will keep rising in future years, the new International Convention for the Prevention of Pollution from Ships (MARPOL) and Sulphur Emissions Control Areas (SECA) regulations will forbid ships to use heavy fuel oils at certain situations. To fulfil with these regulations, the next step in the marine shipping business will comprise the use of cleaner fuels on board as well as developing new propulsion concept. In this work a new conceptual marine propulsion system is developed, based on the integration of diesel generators with fuel cells in a 2850 metric tonne of deadweight platform supply vessel. The efficiency of the two 250 kW methanol-fed Solid Oxide Fuel Cell (SOFC) system installed on board combined with the hydro dynamically optimized design of the hull of the ship will allow the ship to successfully operate at certain modes of operation while notably reduce the pollutant emissions to the atmosphere. Besides the cogeneration heat obtained from the fuel cell system will be used to answer different heating needs on board the vessel
Resumo:
El sistema de energía eólica-diesel híbrido tiene un gran potencial en la prestación de suministro de energía a comunidades remotas. En comparación con los sistemas tradicionales de diesel, las plantas de energía híbridas ofrecen grandes ventajas tales como el suministro de capacidad de energía extra para "microgrids", reducción de los contaminantes y emisiones de gases de efecto invernadero, y la cobertura del riesgo de aumento inesperado del precio del combustible. El principal objetivo de la presente tesis es proporcionar nuevos conocimientos para la evaluación y optimización de los sistemas de energía híbrido eólico-diesel considerando las incertidumbres. Dado que la energía eólica es una variable estocástica, ésta no puede ser controlada ni predecirse con exactitud. La naturaleza incierta del viento como fuente de energía produce serios problemas tanto para la operación como para la evaluación del valor del sistema de energía eólica-diesel híbrido. Por un lado, la regulación de la potencia inyectada desde las turbinas de viento es una difícil tarea cuando opera el sistema híbrido. Por otro lado, el bene.cio económico de un sistema eólico-diesel híbrido se logra directamente a través de la energía entregada a la red de alimentación de la energía eólica. Consecuentemente, la incertidumbre de los recursos eólicos incrementa la dificultad de estimar los beneficios globales en la etapa de planificación. La principal preocupación del modelo tradicional determinista es no tener en cuenta la incertidumbre futura a la hora de tomar la decisión de operación. Con lo cual, no se prevé las acciones operativas flexibles en respuesta a los escenarios futuros. El análisis del rendimiento y simulación por ordenador en el Proyecto Eólico San Cristóbal demuestra que la incertidumbre sobre la energía eólica, las estrategias de control, almacenamiento de energía, y la curva de potencia de aerogeneradores tienen un impacto significativo sobre el rendimiento del sistema. En la presente tesis, se analiza la relación entre la teoría de valoración de opciones y el proceso de toma de decisiones. La opción real se desarrolla con un modelo y se presenta a través de ejemplos prácticos para evaluar el valor de los sistemas de energía eólica-diesel híbridos. Los resultados muestran que las opciones operacionales pueden aportar un valor adicional para el sistema de energía híbrida, cuando esta flexibilidad operativa se utiliza correctamente. Este marco se puede aplicar en la optimización de la operación a corto plazo teniendo en cuenta la naturaleza dependiente de la trayectoria de la política óptima de despacho, dadas las plausibles futuras realizaciones de la producción de energía eólica. En comparación con los métodos de valoración y optimización existentes, el resultado del caso de estudio numérico muestra que la política de operación resultante del modelo de optimización propuesto presenta una notable actuación en la reducción del con- sumo total de combustible del sistema eólico-diesel. Con el .n de tomar decisiones óptimas, los operadores de plantas de energía y los gestores de éstas no deben centrarse sólo en el resultado directo de cada acción operativa, tampoco deberían tomar decisiones deterministas. La forma correcta es gestionar dinámicamente el sistema de energía teniendo en cuenta el valor futuro condicionado en cada opción frente a la incertidumbre. ABSTRACT Hybrid wind-diesel power systems have a great potential in providing energy supply to remote communities. Compared with the traditional diesel systems, hybrid power plants are providing many advantages such as providing extra energy capacity to the micro-grid, reducing pollution and greenhouse-gas emissions, and hedging the risk of unexpected fuel price increases. This dissertation aims at providing novel insights for assessing and optimizing hybrid wind-diesel power systems considering the related uncertainties. Since wind power can neither be controlled nor accurately predicted, the energy harvested from a wind turbine may be considered a stochastic variable. This uncertain nature of wind energy source results in serious problems for both the operation and value assessment of the hybrid wind-diesel power system. On the one hand, regulating the uncertain power injected from wind turbines is a difficult task when operating the hybrid system. On the other hand, the economic profit of a hybrid wind-diesel system is achieved directly through the energy delivered to the power grid from the wind energy. Therefore, the uncertainty of wind resources has increased the difficulty in estimating the total benefits in the planning stage. The main concern of the traditional deterministic model is that it does not consider the future uncertainty when making the dispatch decision. Thus, it does not provide flexible operational actions in response to the uncertain future scenarios. Performance analysis and computer simulation on the San Cristobal Wind Project demonstrate that the wind power uncertainty, control strategies, energy storage, and the wind turbine power curve have a significant impact on the performance of the system. In this dissertation, the relationship between option pricing theory and decision making process is discussed. A real option model is developed and presented through practical examples for assessing the value of hybrid wind-diesel power systems. Results show that operational options can provide additional value to the hybrid power system when this operational flexibility is correctly utilized. This framework can be applied in optimizing short term dispatch decisions considering the path-dependent nature of the optimal dispatch policy, given the plausible future realizations of the wind power production. Comparing with the existing valuation and optimization methods, result from numerical example shows that the dispatch policy resulting from the proposed optimization model exhibits a remarkable performance in minimizing the total fuel consumption of the wind-diesel system. In order to make optimal decisions, power plant operators and managers should not just focus on the direct outcome of each operational action; neither should they make deterministic decisions. The correct way is to dynamically manage the power system by taking into consideration the conditional future value in each option in response to the uncertainty.
Resumo:
A rápida evolução do mercado automotivo, em função de maiores restrições sobre as emissões, impulsionou a utilização de várias alternativas para melhorias dos motores diesel, entre elas as mudanças nos seus componentes com o auxílio de ferramentas de modelagem e a utilização de combustíveis alternativos. As características dos combustíveis afetarão a queima e, assim, alteram os resíduos do processo de combustão. Novos combustíveis podem também ser utilizados como uma alternativa para veículos de gerações anteriores com o intuito de reduzir as emissões. Este estudo mostra os efeitos da utilização do Biodiesel B20 e do Biodiesel Amyris em motores de combustão interna. Para isso, foram realizados testes de motores em salas dinamométricas, e seus resultados confrontados e discutidos. Além disso, são abordados os efeitos do combustível no processo da combustão. Esta Dissertação está concentrada, principalmente, na emissão de NOx e de material particulado, que são poluentes mais restritivos perante a Legislação brasileira de emissões CONAMA P7.
Resumo:
National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
"Project no. 10.082."
Resumo:
Thesis (Master's)--University of Washington, 2016-06