975 resultados para desert halophyte


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Entomopathogenic nematodes, Steinernema carpocapsae, S. feltiae (Steinernematids) Heterorhabditis indica and H. bacteriophora (Heterorhabditids) were studied to control nymphs of desert locust Schistocerca gregaria. Results of all experiments showed a significant difference in mortality percentage among all isolates. All nematodes were found more effective when exposure time was increased up to 10 days. On the other hand, both Heterorhabditids caused maximum mortality as compared to Steinernematids at 30 degree C. When different moisture levels were tested in the sand arena, a medium level of moisture (1%) caused maximum insect mortality in all isolates. However, highest concentration of each isolate (200 IJs per ml) proved to be most appropriate for maximum insect death. Similarly, both Heterorhabditis nematodes when orally applied to insects killed maximum nymphs as compared to other two Steinernematids. A similar response was observed in infectivity test when maximum percentage of IJs of both isolates of Heterorhabditis successfully penetrated into the body of locust nymphs. This research suggests some useful basic findings in developing biocides with suitable virulent of entomopathogenic nematode for controlling nymphs of desert locust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The atmospheric component of the United Kingdom’s new High-resolution Global Environmental Model (HiGEM) has been run with interactive aerosol schemes that include biomass burning and mineral dust. Dust emission, transport, and deposition are parameterized within the model using six particle size divisions, which are treated independently. The biomass is modeled in three nonindependent modes, and emissions are prescribed from an external dataset. The model is shown to produce realistic horizontal and vertical distributions of these aerosols for each season when compared with available satellite- and ground-based observations and with other models. Combined aerosol optical depths off the coast of North Africa exceed 0.5 both in boreal winter, when biomass is the main contributor, and also in summer, when the dust dominates. The model is capable of resolving smaller-scale features, such as dust storms emanating from the Bode´ le´ and Saharan regions of North Africa and the wintertime Bode´ le´ low-level jet. This is illustrated by February and July case studies, in which the diurnal cycles of model variables in relation to dust emission and transport are examined. The top-of-atmosphere annual mean radiative forcing of the dust is calculated and found to be globally quite small but locally very large, exceeding 20 W m22 over the Sahara, where inclusion of dust aerosol is shown to improve the model radiative balance. This work extends previous aerosol studies by combining complexity with increased global resolution and represents a step toward the next generation of models to investigate aerosol–climate interactions. 1. Introduction Accurate modeling of mineral dust is known to be important because of its radiative impact in both numerical weather prediction models (Milton et al. 2008; Haywood et

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence increasingly suggests that sub-Saharan Africa is at the center of human evolution and understanding routes of dispersal “out of Africa” is thus becoming increasingly important. The Sahara Desert is considered by many to be an obstacle to these dispersals and a Nile corridor route has been proposed to cross it. Here we provide evidence that the Sahara was not an effective barrier and indicate how both animals and humans populated it during past humid phases. Analysis of the zoogeography of the Sahara shows that more animals crossed via this route than used the Nile corridor. Furthermore, many of these species are aquatic. This dispersal was possible because during the Holocene humid period the region contained a series of linked lakes, rivers, and inland deltas comprising a large interlinked waterway, channeling water and animals into and across the Sahara, thus facilitating these dispersals. This system was last active in the early Holocene when many species appear to have occupied the entire Sahara. However, species that require deep water did not reach northern regions because of weak hydrological connections. Human dispersals were influenced by this distribution; Nilo-Saharan speakers hunting aquatic fauna with barbed bone points occupied the southern Sahara, while people hunting Savannah fauna with the bow and arrow spread southward. The dating of lacustrine sediments show that the “green Sahara” also existed during the last interglacial (∼125 ka) and provided green corridors that could have formed dispersal routes at a likely time for the migration of modern humans out of Africa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A significant desert dust deposition event occurred on Mt. Elbrus, Caucasus Mountains, Russia on 5 May 2009, where the deposited dust later appeared as a brown layer in the snow pack. An examination of dust transportation history and analysis of chemical and physical properties of the deposited dust were used to develop a new approach for high-resolution “provenancing” of dust deposition events recorded in snow pack using multiple independent techniques. A combination of SEVIRI red-green-blue composite imagery, MODIS atmospheric optical depth fields derived using the Deep Blue algorithm, air mass trajectories derived with HYSPLIT model and analysis of meteorological data enabled identification of dust source regions with high temporal (hours) and spatial (ca. 100 km) resolution. Dust, deposited on 5 May 2009, originated in the foothills of the Djebel Akhdar in eastern Libya where dust sources were activated by the intrusion of cold air from the Mediterranean Sea and Saharan low pressure system and transported to the Caucasus along the eastern Mediterranean coast, Syria and Turkey. Particles with an average diameter below 8 μm accounted for 90% of the measured particles in the sample with a mean of 3.58 μm, median 2.48 μm. The chemical signature of this long-travelled dust was significantly different from the locally-produced dust and close to that of soils collected in a palaeolake in the source region, in concentrations of hematite. Potential addition of dust from a secondary source in northern Mesopotamia introduced uncertainty in the “provenancing” of dust from this event. Nevertheless, the approach adopted here enables other dust horizons in the snowpack to be linked to specific dust transport events recorded in remote sensing and meteorological data archives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A significant desert dust deposition event occurred on Mt. Elbrus, Caucasus Mountains, Russia on 5 May 2009, where the deposited dust later appeared as a brown layer in the snow pack. An examination of dust transportation history and analysis of chemical and physical properties of the deposited dust were used to develop a new approach for high-resolution provenancing of dust deposition events recorded in snow pack using multiple independent techniques. A combination of SEVIRI red-green-blue composite imagery, MODIS atmospheric optical depth fields derived using the Deep Blue algorithm, air mass trajectories derived with HYSPLIT model and analysis of meteorological data enabled identification of dust source regions with high temporal (hours) and spatial (ca. 100 km) resolution. Dust, deposited on 5 May 2009, originated in the foothills of the Djebel Akhdar in eastern Libya where dust sources were activated by the intrusion of cold air from the Mediterranean Sea and Saharan low pressure system and transported to the Caucasus along the eastern Mediterranean coast, Syria and Turkey. Particles with an average diameter below 8 μm accounted for 90% of the measured particles in the sample with a mean of 3.58 μm, median 2.48 μm and the dominant mode of 0.60 μm. The chemical signature of this long-travelled dust was significantly different from the locally-produced dust and close to that of soils collected in a palaeolake in the source region, in concentrations of hematite and oxides of aluminium, manganese, and magnesium. Potential addition of dust from a secondary source in northern Mesopotamia introduced uncertainty in the provenancing of dust from this event. Nevertheless, the approach adopted here enables other dust horizons in the snowpack to be linked to specific dust transport events recorded in remote sensing and meteorological data archives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A record of dust deposition events between 2009 and 2012 on Mt. Elbrus, Caucasus Mountains derived from a snow pit and a shallow ice core is presented for the first time for this region. A combination of isotopic analysis, SEVIRI red-green-blue composite imagery, MODIS atmospheric optical depth fields derived using the Deep Blue algorithm, air mass trajectories derived using the HYSPLIT model and analysis of meteorological data enabled identification of dust source regions with high temporal (hours) and spatial (cf. 20–100 km) resolution. Seventeen dust deposition events were detected; fourteen occurred in March–June, one in February and two in October. Four events originated in the Sahara, predominantly in north-eastern Libya and eastern Algeria. Thirteen events originated in the Middle East, in the Syrian Desert and northern Mesopotamia, from a mixture of natural and anthropogenic sources. Dust transportation from Sahara was associated with vigorous Saharan depressions, strong surface winds in the source region and mid-tropospheric south-westerly flow with daily winds speeds of 20–30 m s−1 at 700 hPa level and, although these events were less frequent, they resulted in higher dust concentrations in snow. Dust transportation from the Middle East was associated with weaker depressions forming over the source region, high pressure centered over or extending towards the Caspian Sea and a weaker southerly or south-easterly flow towards the Caucasus Mountains with daily wind speeds of 12–18 m s−1 at 700 hPa level. Higher concentrations of nitrates and ammonium characterise dust from the Middle East deposited on Mt. Elbrus in 2009 indicating contribution of anthropogenic sources. The modal values of particle size distributions ranged between 1.98 μm and 4.16 μm. Most samples were characterised by modal values of 2.0–2.8 μm with an average of 2.6 μm and there was no significant difference between dust from the Sahara and the Middle East.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamics of a small linear dune on the northern margin of the Namib Sand Sea have been monitored using erosion pins placed at the dune tip since 1969. GPS measurements of these pins enabled estimation of the rates of advance and lateral migration of the dune. The average rate of advance of the dune tip over the period 1969–2012 was 1.99 m yr–1 towards 015°. Rates of advance and lateral movement varied over the period of monitoring, with a decrease in rates of advance by a factor of 50%, but an increase in the rate of lateral movement. Changes in dune behavior appear to be related to changes in wind regime and the vegetation cover of the interdune area, as a result of increased rainfall in recent years. This study demonstrates the dynamic nature of the tip of this dune and its sensitivity to changes in winds and sand supply.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new aerosol index for the Along-Track Scanning Radiometers (ATSRs) is presented that provides a means to detect desert dust contamination in infrared SST retrievals. The ATSR Saharan dust index (ASDI) utilises only the thermal infrared channels and may therefore be applied consistently to the entire ATSR data record (1991 to present), for both day time and night time observations. The derivation of the ASDI is based on a principal component (PC) analysis (PCA) of two unique pairs of channel brightness temperature differences (BTDs). In 2-D space (i.e. BTD vs BTD), it is found that the loci of data unaffected by aerosol are confined to a single axis of variability. In contrast, the loci of aerosol-contaminated data fall off-axis, shifting in a direction that is approximately orthogonal to the clear-sky axis. The ASDI is therefore defined to be the second PC, where the first PC accounts for the clear-sky variability. The primary ASDI utilises the ATSR nadir and forward-view observations at 11 and 12 μm (ASDI2). A secondary, three-channel nadir-only ASDI (ASDI3) is also defined for situations where data from the forward view are not available. Empirical and theoretical analyses suggest that ASDI is well correlated with aerosol optical depth (AOD: correlation r is typically > 0.7) and provides an effective tool for detecting desert mineral dust. Overall, ASDI2 is found to be more effective than ASDI3, with the latter being sensitive only to very high dust loading. In addition, use of ASDI3 is confined to night time observations as it relies on data from the 3.7 μm channel, which is sensitive to reflected solar radiation. This highlights the benefits of having data from both a nadir- and a forward-view for this particular approach to aerosol detection.