955 resultados para depth


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-density optical data storage requires high-numerical-aperture (NA) lenses and short wavelengths, But, with increasing NA and decreasing wavelength, the depth of focus (DOF) decreases rapidly. We propose to use pure-phase superresolution apodizers to optimize the axial intensity distribution and extend the DOF of an optical pickup. With this kind of apodizer, the expected DOF can be 2-4.88 times greater than that of the original system, and the spot size will be smaller than that of the original system. (C) 2001 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose the use of a phase-shifting apodizers to increase focal depth, and we study the axial and radial behavior of this kind of apodizer under the condition that the axial intensity distribution is optimized for high focal depth. (C) 2002 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The axial intensity distribution and focal depth of an apoclized focusing optical system are theoretically investigated with two kinds of incident light fields: a uniform-intensity-distribution beam and a Gaussian beam. Both a low-numerical-aperture and a high-numerical-aperture optical system are considered. Numerical results show that the depth of focus can be adjusted by changing the geometrical parameters and transmissivity of the apodizer in the focusing optical system. When a Gaussian beam is employed as the incident beam, the waist width also affects the depth of focus. The tunable range of the focal depth is very considerable. (c) 2005 Society of Photo-Optical Instrumentation Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The axial intensity distribution and focal depth of an apoclized focusing optical system are theoretically investigated with two kinds of incident light fields: a uniform-intensity-distribution beam and a Gaussian beam. Both a low-numerical-aperture and a high-numerical-aperture optical system are considered. Numerical results show that the depth of focus can be adjusted by changing the geometrical parameters and transmissivity of the apodizer in the focusing optical system. When a Gaussian beam is employed as the incident beam, the waist width also affects the depth of focus. The tunable range of the focal depth is very considerable. (c) 2005 Society of Photo-Optical Instrumentation Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work I present recent scientific papers related to the concept of tree-depth: different characterizations, a game theoretic approach to it and recently discovered applications. The focus in this work is presenting all the ideas in a self-contained way, such that they can be easily understood with little previous knowledge. Apart from that all the ideas are presented in a homogeneous way with clear examples and all the lemmas, some of which didn’t have proofs in the papers, are presented with rigorous proofs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fjord estuaries are common along the northeast Pacific coastline, but little information is available on fish assemblage structure and its spatiotemporal variability. Here, we examined changes in diversity metrics, species biomasses, and biomass spectra (the distribution of biomass across body size classes) over three seasons (fall, winter, summer) and at multiple depths (20 to 160 m) in Puget Sound, Washington, a deep and highly urbanized fjord estuary on the U.S. west coast. Our results indicate that this fish assemblage is dominated by cartilaginous species (spotted ratfish [Hydrolagus colliei] and spiny dogfish [Squalus acanthias]) and therefore differs fundamentally from fish assemblages found in shallower estuaries in the northeast Pacific. Diversity was greatest in shallow waters (<40 m), where the assemblage was composed primarily of flatfishes and sculpins, and lowest in deep waters (>80 m) that are more common in Puget Sound and that are dominated by spotted ratf ish and seasonally (fall and summer) by spiny dogfish. Strong depth-dependent variation in the demersal fish assemblage may be a general feature of deep fjord estuaries and indicates pronounced spatial variability in the food web. Future comparisons with less impacted fjords may offer insight into whether cartilaginous species naturally dominate these systems or only do so under conditions related to human-caused ecosystem degradation. Information on species distributions is critical for marine spatial planning and for modeling energy flows in coastal food webs. The data presented here will aid these endeavors and highlight areas for future research in this important yet understudied system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distribution and demographics of the hogfish (Lachnolaimus maximus) were investigated by using a combined approach of in situ observations and life history analyses. Presence, density, size, age, and size and age at sex change all varied with depth in the eastern Gulf of Mexico. Hogfish (64–774 mm fork length and 0–19 years old) were observed year-round and were most common over complex, natural hard bottom habitat. As depth increased, the presence and density of hogfish decreased, but mean size and age increased. Size at age was smaller nearshore (<30 m). Length and age at sex change of nearshore hogfish were half those of offshore hogfish and were coincident with the minimum legal size limit. Fishing pressure is presumably greater nearshore and presents a confounding source of increased mortality; however, a strong red tide occurred the year before this study began and likely also affected nearshore demographics. Nevertheless, these data indicate ontogenetic migration and escapement of fast-growing fish to offshore habitat, both of which should reduce the likelihood of fishing-induced evolution. Data regarding the hogfish fishery are limited and regionally dependent, which has confounded previous stock assessments; however, the spatially explicit vital rates reported herein can be applied to future monitoring efforts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Quality of cardiopulmonary resuscitation (CPR) is key to increase survival from cardiac arrest. Providing chest compressions with adequate rate and depth is difficult even for well-trained rescuers. The use of real-time feedback devices is intended to contribute to enhance chest compression quality. These devices are typically based on the double integration of the acceleration to obtain the chest displacement during compressions. The integration process is inherently unstable and leads to important errors unless boundary conditions are applied for each compression cycle. Commercial solutions use additional reference signals to establish these conditions, requiring additional sensors. Our aim was to study the accuracy of three methods based solely on the acceleration signal to provide feedback on the compression rate and depth. Materials and Methods We simulated a CPR scenario with several volunteers grouped in couples providing chest compressions on a resuscitation manikin. Different target rates (80, 100, 120, and 140 compressions per minute) and a target depth of at least 50 mm were indicated. The manikin was equipped with a displacement sensor. The accelerometer was placed between the rescuer's hands and the manikin's chest. We designed three alternatives to direct integration based on different principles (linear filtering, analysis of velocity, and spectral analysis of acceleration). We evaluated their accuracy by comparing the estimated depth and rate with the values obtained from the reference displacement sensor. Results The median (IQR) percent error was 5.9% (2.8-10.3), 6.3% (2.9-11.3), and 2.5% (1.2-4.4) for depth and 1.7% (0.0-2.3), 0.0% (0.0-2.0), and 0.9% (0.4-1.6) for rate, respectively. Depth accuracy depended on the target rate (p < 0.001) and on the rescuer couple (p < 0.001) within each method. Conclusions Accurate feedback on chest compression depth and rate during CPR is possible using exclusively the chest acceleration signal. The algorithm based on spectral analysis showed the best performance. Despite these encouraging results, further research should be conducted to asses the performance of these algorithms with clinical data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The length–weight relationships of 22 species of deep-sea fishes inhabiting the continental slopes beyond 250 m depth along the West Coast of India are presented. The parameters a and b of the equation W=a Lb were estimated. The fish samples were collected from trawl surveys during 1999 to 2001 on board the FORV Sagar Sampada at a depth range of 250 to 600 m in the area between 7°N and 20°N latitude. The value of b ranged from 1.94 to 3.36.