109 resultados para demodulation
Resumo:
We present a comparative study of the influence of dispersion induced phase noise for n-level PSK systems. From the analysis, we conclude that the phase noise influence for classical homodyne/heterodyne PSK systems is entirely determined by the modulation complexity (expressed in terms of constellation diagram) and the analogue demodulation format. On the other hand, the use of digital signal processing (DSP) in homodyne/intradyne systems renders a fiber length dependence originating from the generation of equalization enhanced phase noise. For future high capacity systems, high constellations must be used in order to lower the symbol rate to practically manageable speeds, and this fact puts severe requirements to the signal and local oscillator (LO) linewidths. Our results for the bit-error-rate (BER) floor caused by the phase noise influence in the case of QPSK, 16PSK and 64PSK systems outline tolerance limitations for the LO performance: 5 MHz linewidth (at 3-dB level) for 100 Gbit/s QPSK; 1 MHz for 400 Gbit/s QPSK; 0.1 MHz for 400 Gbit/s 16PSK and 1 Tbit/s 64PSK systems. This defines design constrains for the phase noise impact in distributed-feed-back (DFB) or distributed-Bragg-reflector (DBR) semiconductor lasers, that would allow moving the system capacity from 100 Gbit/s system capacity to 400 Gbit/s in 3 years (1 Tbit/s in 5 years). It is imperative at the same time to increase the analogue to digital conversion (ADC) speed such that the single quadrature symbol rate goes from today's 25 GS/s to 100 GS/s (using two samples per symbol). © 2014 by Walter de Gruyter Berlin/Boston.
Resumo:
An approach to realizing simultaneous measurement of refractive index (RI) and temperature based on a microfiber-based dual inline Mach-Zehnder interferometer (MZI) is proposed and demonstrated. Due to different interference mechanisms, as one interference between the core mode and the lower order cladding mode in the sensing single-mode fiber and the other interference between the fundamental mode and the high-order mode in the multimode microfiber, the former interferometer achieves RI sensitivity of -23.67 nm/RIU and temperature sensitivity of 81.2 pm/oC, whereas those of the latter are 3820.23 nm/RIU, and -465.7 pm/oC, respectively. The large sensitivity differences can provide a more accurate demodulation of RI and temperature. The sensor is featured with multiparameters measurement, compact structure, high sensitivity, low cost, and easy fabrication.
Resumo:
Switched mode power supplies (SMPSs) are essential components in many applications, and electromagnetic interference is an important consideration in the SMPS design. Spread spectrum based PWM strategies have been used in SMPS designs to reduce the switching harmonics. This paper proposes a novel method to integrate a communication function into spread spectrum based PWM strategy without extra hardware costs. Direct sequence spread spectrum (DSSS) and phase shift keying (PSK) data modulation are employed to the PWM of the SMPS, so that it has reduced switching harmonics and the input and output power line voltage ripples contain data. A data demodulation algorithm has been developed for receivers, and code division multiple access (CDMA) concept is employed as communication method for a system with multiple SMPSs. The proposed method has been implemented in both Buck and Boost converters. The experimental results validated the proposed DSSS based PWM strategy for both harmonic reduction and communication.
Resumo:
Close similarities have been found between the otoliths of sea-caught and laboratory-reared larvae of the common sole Solea solea (L.), given appropriate temperatures and nourishment of the latter. But from hatching to mouth formation. and during metamorphosis, sole otoliths have proven difficult to read because the increments may be less regular and low contrast. In this study, the growth increments in otoliths of larvae reared at 12 degrees C were counted by light microscopy to test the hypothesis of daily deposition, with some results verified using scanning electron microscopy (SEM), and by image analysis in order to compare the reliability of the 2 methods in age estimation. Age was first estimated (in days posthatch) from light micrographs of whole mounted otoliths. Counts were initiated from the increment formed at the time of month opening (Day 4). The average incremental deposition rate was consistent with the daily hypothesis. However, the light-micrograph readings tended to underestimate the mean ages of the larvae. Errors were probably associated with the low-contrast increments: those deposited after the mouth formation during the transition to first feeding, and those deposited from the onset of eye migration (about 20 d posthatch) during metamorphosis. SEM failed to resolve these low-contrast areas accurately because of poor etching. A method using image analysis was applied to a subsample of micrograph-counted otoliths. The image analysis was supported by an algorithm of pattern recognition (Growth Demodulation Algorithm, GDA). On each otolith, the GDA method integrated the growth pattern of these larval otoliths to averaged data from different radial profiles, in order to demodulate the exponential trend of the signal before spectral analysis (Fast Fourier Transformation, FFT). This second method both allowed more precise designation of increments, particularly for low-contrast areas, and more accurate readings but increased error in mean age estimation. The variability is probably due to a still rough perception of otolith increments by the GDA method, counting being achieved through a theoretical exponential pattern and mean estimates being given by FFT. Although this error variability was greater than expected, the method provides for improvement in both speed and accuracy in otolith readings.