997 resultados para decomposition methods
Resumo:
Solid state Ln-DMBP compounds, where Ln represents trivalent lanthanides (except for promethium) and yttrium, and DMBP is 4-dimethylaminobenzylidenepyruvate, were prepared. Thermogravimetry (TG), differential thermal analysis (DTA), and other methods of analysis were used to characterize and to study the thermal stability and thermal decomposition of these compounds. © 1993.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Sugarcane bagasse cellulose was subjected to the extremely low acid (ELA) hydrolysis in 0.07% H2SO4 at 190, 210 and 225 degrees C for various times. The cellulose residues from this process were characterized by TGA, XRD, GPC, FIR and SEM. A kinetic study of thermal decomposition of the residues was also carried out, using the ASTM and Kissinger methods. The thermal studies revealed that residues of cellulose hydrolyzed at 190, 210 and 225 degrees C for 80,40 and 8 min have initial decomposition temperature and activation energy for the main decomposition step similar to those of Avicel PH-101. XRD studies confirmed this finding by showing that these cellulose residues are similar to Avicel in crystallinity index and crystallite size in relation to the 110 and 200 planes. FTIR spectra revealed no significant changes in the cellulose chemical structure and analysis of SEM micrographs demonstrated that the particle size of the cellulose residues hydrolyzed at 190 and 210 degrees C were similar to that of Avicel. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This work is concerned with dynamical systems in presence of symmetries and reversing symmetries. We describe a construction process of subspaces that are invariant by linear Gamma-reversible-equivariant mappings, where Gamma is the compact Lie group of all the symmetries and reversing symmetries of such systems. These subspaces are the sigma-isotypic components, first introduced by Lamb and Roberts in (1999) [10] and that correspond to the isotypic components for purely equivariant systems. In addition, by representation theory methods derived from the topological structure of the group Gamma, two algebraic formulae are established for the computation of the sigma-index of a closed subgroup of Gamma. The results obtained here are to be applied to general reversible-equivariant systems, but are of particular interest for the more subtle of the two possible cases, namely the non-self-dual case. Some examples are presented. (C) 2011 Elsevier BM. All rights reserved.
Resumo:
In this thesis some multivariate spectroscopic methods for the analysis of solutions are proposed. Spectroscopy and multivariate data analysis form a powerful combination for obtaining both quantitative and qualitative information and it is shown how spectroscopic techniques in combination with chemometric data evaluation can be used to obtain rapid, simple and efficient analytical methods. These spectroscopic methods consisting of spectroscopic analysis, a high level of automation and chemometric data evaluation can lead to analytical methods with a high analytical capacity, and for these methods, the term high-capacity analysis (HCA) is suggested. It is further shown how chemometric evaluation of the multivariate data in chromatographic analyses decreases the need for baseline separation. The thesis is based on six papers and the chemometric tools used are experimental design, principal component analysis (PCA), soft independent modelling of class analogy (SIMCA), partial least squares regression (PLS) and parallel factor analysis (PARAFAC). The analytical techniques utilised are scanning ultraviolet-visible (UV-Vis) spectroscopy, diode array detection (DAD) used in non-column chromatographic diode array UV spectroscopy, high-performance liquid chromatography with diode array detection (HPLC-DAD) and fluorescence spectroscopy. The methods proposed are exemplified in the analysis of pharmaceutical solutions and serum proteins. In Paper I a method is proposed for the determination of the content and identity of the active compound in pharmaceutical solutions by means of UV-Vis spectroscopy, orthogonal signal correction and multivariate calibration with PLS and SIMCA classification. Paper II proposes a new method for the rapid determination of pharmaceutical solutions by the use of non-column chromatographic diode array UV spectroscopy, i.e. a conventional HPLC-DAD system without any chromatographic column connected. In Paper III an investigation is made of the ability of a control sample, of known content and identity to diagnose and correct errors in multivariate predictions something that together with use of multivariate residuals can make it possible to use the same calibration model over time. In Paper IV a method is proposed for simultaneous determination of serum proteins with fluorescence spectroscopy and multivariate calibration. Paper V proposes a method for the determination of chromatographic peak purity by means of PCA of HPLC-DAD data. In Paper VI PARAFAC is applied for the decomposition of DAD data of some partially separated peaks into the pure chromatographic, spectral and concentration profiles.
Resumo:
[EN] Background: The paradox of health refers to the improvement in objective measures of health and the increase in the reported prevalence of chronic conditions. The objective of this paper is to test the paradox of health in Catalonia from 1994 to 2006. Methods: Longitudinal cross-sectional study using the Catalonia Health Interview Survey of 1994 and 2006. The approach used was the three-fold Blinder - Oaxaca decomposition, separating the part of the differential in mean visual analogue scale value (VAS) due to group differences in the predictors (prevalence effect), due to differences in the coefficients (severity effect), and an interaction term. Variables included were the VAS value, education level, labour status, marital status, all common chronic conditions over the two cross-sections, and a variable for non-common chronic conditions and other conditions. Sample weights have been applied. Results: Results show that there is an increase in mean VAS for men aged 15-44, and a decrease in mean VAS for women aged 65-74 and 75 and more. The increase in mean VAS for men aged 15-44 could be explained by a decrease in the severity effect, which offsets the increase in the prevalence effect. The decrease in mean VAS for women aged 65-74 and 75 and more could be explained by an increase in the prevalence effect, which does not offset the decrease in the severity effect. Conclusions: The results of the present analysis corroborate the paradox of health hypothesis for the population of Catalonia, and highlight the need to be careful when measuring population health over time, as well as their usefulness to detect population's perceptions.
Resumo:
In this thesis, numerical methods aiming at determining the eigenfunctions, their adjoint and the corresponding eigenvalues of the two-group neutron diffusion equations representing any heterogeneous system are investigated. First, the classical power iteration method is modified so that the calculation of modes higher than the fundamental mode is possible. Thereafter, the Explicitly-Restarted Arnoldi method, belonging to the class of Krylov subspace methods, is touched upon. Although the modified power iteration method is a computationally-expensive algorithm, its main advantage is its robustness, i.e. the method always converges to the desired eigenfunctions without any need from the user to set up any parameter in the algorithm. On the other hand, the Arnoldi method, which requires some parameters to be defined by the user, is a very efficient method for calculating eigenfunctions of large sparse system of equations with a minimum computational effort. These methods are thereafter used for off-line analysis of the stability of Boiling Water Reactors. Since several oscillation modes are usually excited (global and regional oscillations) when unstable conditions are encountered, the characterization of the stability of the reactor using for instance the Decay Ratio as a stability indicator might be difficult if the contribution from each of the modes are not separated from each other. Such a modal decomposition is applied to a stability test performed at the Swedish Ringhals-1 unit in September 2002, after the use of the Arnoldi method for pre-calculating the different eigenmodes of the neutron flux throughout the reactor. The modal decomposition clearly demonstrates the excitation of both the global and regional oscillations. Furthermore, such oscillations are found to be intermittent with a time-varying phase shift between the first and second azimuthal modes.
Resumo:
This work presents exact, hybrid algorithms for mixed resource Allocation and Scheduling problems; in general terms, those consist into assigning over time finite capacity resources to a set of precedence connected activities. The proposed methods have broad applicability, but are mainly motivated by applications in the field of Embedded System Design. In particular, high-performance embedded computing recently witnessed the shift from single CPU platforms with application-specific accelerators to programmable Multi Processor Systems-on-Chip (MPSoCs). Those allow higher flexibility, real time performance and low energy consumption, but the programmer must be able to effectively exploit the platform parallelism. This raises interest in the development of algorithmic techniques to be embedded in CAD tools; in particular, given a specific application and platform, the objective if to perform optimal allocation of hardware resources and to compute an execution schedule. On this regard, since embedded systems tend to run the same set of applications for their entire lifetime, off-line, exact optimization approaches are particularly appealing. Quite surprisingly, the use of exact algorithms has not been well investigated so far; this is in part motivated by the complexity of integrated allocation and scheduling, setting tough challenges for ``pure'' combinatorial methods. The use of hybrid CP/OR approaches presents the opportunity to exploit mutual advantages of different methods, while compensating for their weaknesses. In this work, we consider in first instance an Allocation and Scheduling problem over the Cell BE processor by Sony, IBM and Toshiba; we propose three different solution methods, leveraging decomposition, cut generation and heuristic guided search. Next, we face Allocation and Scheduling of so-called Conditional Task Graphs, explicitly accounting for branches with outcome not known at design time; we extend the CP scheduling framework to effectively deal with the introduced stochastic elements. Finally, we address Allocation and Scheduling with uncertain, bounded execution times, via conflict based tree search; we introduce a simple and flexible time model to take into account duration variability and provide an efficient conflict detection method. The proposed approaches achieve good results on practical size problem, thus demonstrating the use of exact approaches for system design is feasible. Furthermore, the developed techniques bring significant contributions to combinatorial optimization methods.
Resumo:
This thesis presents new methods to simulate systems with hydrodynamic and electrostatic interactions. Part 1 is devoted to computer simulations of Brownian particles with hydrodynamic interactions. The main influence of the solvent on the dynamics of Brownian particles is that it mediates hydrodynamic interactions. In the method, this is simulated by numerical solution of the Navier--Stokes equation on a lattice. To this end, the Lattice--Boltzmann method is used, namely its D3Q19 version. This model is capable to simulate compressible flow. It gives us the advantage to treat dense systems, in particular away from thermal equilibrium. The Lattice--Boltzmann equation is coupled to the particles via a friction force. In addition to this force, acting on {it point} particles, we construct another coupling force, which comes from the pressure tensor. The coupling is purely local, i.~e. the algorithm scales linearly with the total number of particles. In order to be able to map the physical properties of the Lattice--Boltzmann fluid onto a Molecular Dynamics (MD) fluid, the case of an almost incompressible flow is considered. The Fluctuation--Dissipation theorem for the hybrid coupling is analyzed, and a geometric interpretation of the friction coefficient in terms of a Stokes radius is given. Part 2 is devoted to the simulation of charged particles. We present a novel method for obtaining Coulomb interactions as the potential of mean force between charges which are dynamically coupled to a local electromagnetic field. This algorithm scales linearly, too. We focus on the Molecular Dynamics version of the method and show that it is intimately related to the Car--Parrinello approach, while being equivalent to solving Maxwell's equations with freely adjustable speed of light. The Lagrangian formulation of the coupled particles--fields system is derived. The quasi--Hamiltonian dynamics of the system is studied in great detail. For implementation on the computer, the equations of motion are discretized with respect to both space and time. The discretization of the electromagnetic fields on a lattice, as well as the interpolation of the particle charges on the lattice is given. The algorithm is as local as possible: Only nearest neighbors sites of the lattice are interacting with a charged particle. Unphysical self--energies arise as a result of the lattice interpolation of charges, and are corrected by a subtraction scheme based on the exact lattice Green's function. The method allows easy parallelization using standard domain decomposition. Some benchmarking results of the algorithm are presented and discussed.
Resumo:
This thesis proposes an integrated holistic approach to the study of neuromuscular fatigue in order to encompass all the causes and all the consequences underlying the phenomenon. Starting from the metabolic processes occurring at the cellular level, the reader is guided toward the physiological changes at the motorneuron and motor unit level and from this to the more general biomechanical alterations. In Chapter 1 a list of the various definitions for fatigue spanning several contexts has been reported. In Chapter 2, the electrophysiological changes in terms of motor unit behavior and descending neural drive to the muscle have been studied extensively as well as the biomechanical adaptations induced. In Chapter 3 a study based on the observation of temporal features extracted from sEMG signals has been reported leading to the need of a more robust and reliable indicator during fatiguing tasks. Therefore, in Chapter 4, a novel bi-dimensional parameter is proposed. The study on sEMG-based indicators opened a scenario also on neurophysiological mechanisms underlying fatigue. For this purpose, in Chapter 5, a protocol designed for the analysis of motor unit-related parameters during prolonged fatiguing contractions is presented. In particular, two methodologies have been applied to multichannel sEMG recordings of isometric contractions of the Tibialis Anterior muscle: the state-of-the-art technique for sEMG decomposition and a coherence analysis on MU spike trains. The importance of a multi-scale approach has been finally highlighted in the context of the evaluation of cycling performance, where fatigue is one of the limiting factors. In particular, the last chapter of this thesis can be considered as a paradigm: physiological, metabolic, environmental, psychological and biomechanical factors influence the performance of a cyclist and only when all of these are kept together in a novel integrative way it is possible to derive a clear model and make correct assessments.
Resumo:
OBJECTIVES: This paper examines four different levels of possible variation in symptom reporting: occasion, day, person and family. DESIGN: In order to rule out effects of retrospection, concurrent symptom reporting was assessed prospectively using a computer-assisted self-report method. METHODS: A decomposition of variance in symptom reporting was conducted using diary data from families with adolescent children. We used palmtop computers to assess concurrent somatic complaints from parents and children six times a day for seven consecutive days. In two separate studies, 314 and 254 participants from 96 and 77 families, respectively, participated. A generalized multilevel linear models approach was used to analyze the data. Symptom reports were modelled using a logistic response function, and random effects were allowed at the family, person and day level, with extra-binomial variation allowed for on the occasion level. RESULTS: Substantial variability was observed at the person, day and occasion level but not at the family level. CONCLUSIONS: To explain symptom reporting in normally healthy individuals, situational as well as person characteristics should be taken into account. Family characteristics, however, would not help to clarify symptom reporting in all family members.
Resumo:
In this work, we present a multichannel EEG decomposition model based on an adaptive topographic time-frequency approximation technique. It is an extension of the Matching Pursuit algorithm and called dependency multichannel matching pursuit (DMMP). It takes the physiologically explainable and statistically observable topographic dependencies between the channels into account, namely the spatial smoothness of neighboring electrodes that is implied by the electric leadfield. DMMP decomposes a multichannel signal as a weighted sum of atoms from a given dictionary where the single channels are represented from exactly the same subset of a complete dictionary. The decomposition is illustrated on topographical EEG data during different physiological conditions using a complete Gabor dictionary. Further the extension of the single-channel time-frequency distribution to a multichannel time-frequency distribution is given. This can be used for the visualization of the decomposition structure of multichannel EEG. A clustering procedure applied to the topographies, the vectors of the corresponding contribution of an atom to the signal in each channel produced by DMMP, leads to an extremely sparse topographic decomposition of the EEG.
Resumo:
In environmental epidemiology, exposure X and health outcome Y vary in space and time. We present a method to diagnose the possible influence of unmeasured confounders U on the estimated effect of X on Y and to propose several approaches to robust estimation. The idea is to use space and time as proxy measures for the unmeasured factors U. We start with the time series case where X and Y are continuous variables at equally-spaced times and assume a linear model. We define matching estimator b(u)s that correspond to pairs of observations with specific lag u. Controlling for a smooth function of time, St, using a kernel estimator is roughly equivalent to estimating the association with a linear combination of the b(u)s with weights that involve two components: the assumptions about the smoothness of St and the normalized variogram of the X process. When an unmeasured confounder U exists, but the model otherwise correctly controls for measured confounders, the excess variation in b(u)s is evidence of confounding by U. We use the plot of b(u)s versus lag u, lagged-estimator-plot (LEP), to diagnose the influence of U on the effect of X on Y. We use appropriate linear combination of b(u)s or extrapolate to b(0) to obtain novel estimators that are more robust to the influence of smooth U. The methods are extended to time series log-linear models and to spatial analyses. The LEP plot gives us a direct view of the magnitude of the estimators for each lag u and provides evidence when models did not adequately describe the data.
Resumo:
Background and aims Fine root decomposition contributes significantly to element cycling in terrestrial ecosystems. However, studies on root decomposition rates and on the factors that potentially influence them are fewer than those on leaf litter decomposition. To study the effects of region and land use intensity on fine root decomposition, we established a large scale study in three German regions with different climate regimes and soil properties. Methods In 150 forest and 150 grassland sites we deployed litterbags (100 μm mesh size) with standardized litter consisting of fine roots from European beech in forests and from a lowland mesophilous hay meadow in grasslands. In the central study region, we compared decomposition rates of this standardized litter with root litter collected on-site to separate the effect of litter quality from environmental factors. Results Standardized herbaceous roots in grassland soils decomposed on average significantly faster (24 ± 6 % mass loss after 12 months, mean ± SD) than beech roots in forest soils (12 ± 4 %; p < 0.001). Fine root decomposition varied among the three study regions. Land use intensity, in particular N addition, decreased fine root decomposition in grasslands. The initial lignin:N ratio explained 15 % of the variance in grasslands and 11 % in forests. Soil moisture, soil temperature, and C:N ratios of soils together explained 34 % of the variance of the fine root mass loss in grasslands, and 24 % in forests. Conclusions Grasslands, which have higher fine root biomass and root turnover compared to forests, also have higher rates of root decomposition. Our results further show that at the regional scale fine root decomposition is influenced by environmental variables such as soil moisture, soil temperature and soil nutrient content. Additional variation is explained by root litter quality.
Resumo:
The purpose of this research is to develop a new statistical method to determine the minimum set of rows (R) in a R x C contingency table of discrete data that explains the dependence of observations. The statistical power of the method will be empirically determined by computer simulation to judge its efficiency over the presently existing methods. The method will be applied to data on DNA fragment length variation at six VNTR loci in over 72 populations from five major racial groups of human (total sample size is over 15,000 individuals; each sample having at least 50 individuals). DNA fragment lengths grouped in bins will form the basis of studying inter-population DNA variation within the racial groups are significant, will provide a rigorous re-binning procedure for forensic computation of DNA profile frequencies that takes into account intra-racial DNA variation among populations. ^