970 resultados para decision directed algorithm


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Although well-established for suspected lower limb deep venous thrombosis, an algorithm combining a clinical decision score, d-dimer testing, and ultrasonography has not been evaluated for suspected upper extremity deep venous thrombosis (UEDVT). OBJECTIVE To assess the safety and feasibility of a new diagnostic algorithm in patients with clinically suspected UEDVT. DESIGN Diagnostic management study. (ClinicalTrials.gov: NCT01324037) SETTING: 16 hospitals in Europe and the United States. PATIENTS 406 inpatients and outpatients with suspected UEDVT. MEASUREMENTS The algorithm consisted of the sequential application of a clinical decision score, d-dimer testing, and ultrasonography. Patients were first categorized as likely or unlikely to have UEDVT; in those with an unlikely score and normal d-dimer levels, UEDVT was excluded. All other patients had (repeated) compression ultrasonography. The primary outcome was the 3-month incidence of symptomatic UEDVT and pulmonary embolism in patients with a normal diagnostic work-up. RESULTS The algorithm was feasible and completed in 390 of the 406 patients (96%). In 87 patients (21%), an unlikely score combined with normal d-dimer levels excluded UEDVT. Superficial venous thrombosis and UEDVT were diagnosed in 54 (13%) and 103 (25%) patients, respectively. All 249 patients with a normal diagnostic work-up, including those with protocol violations (n = 16), were followed for 3 months. One patient developed UEDVT during follow-up, for an overall failure rate of 0.4% (95% CI, 0.0% to 2.2%). LIMITATIONS This study was not powered to show the safety of the substrategies. d-Dimer testing was done locally. CONCLUSION The combination of a clinical decision score, d-dimer testing, and ultrasonography can safely and effectively exclude UEDVT. If confirmed by other studies, this algorithm has potential as a standard approach to suspected UEDVT. PRIMARY FUNDING SOURCE None.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Postpartum hemorrhage (PPH) is one of the main causes of maternal deaths even in industrialized countries. It represents an emergency situation which necessitates a rapid decision and in particular an exact diagnosis and root cause analysis in order to initiate the correct therapeutic measures in an interdisciplinary cooperation. In addition to established guidelines, the benefits of standardized therapy algorithms have been demonstrated. A therapy algorithm for the obstetric emergency of postpartum hemorrhage in the German language is not yet available. The establishment of an international (Germany, Austria and Switzerland D-A-CH) "treatment algorithm for postpartum hemorrhage" was an interdisciplinary project based on the guidelines of the corresponding specialist societies (anesthesia and intensive care medicine and obstetrics) in the three countries as well as comparable international algorithms for therapy of PPH.The obstetrics and anesthesiology personnel must possess sufficient expertise for emergency situations despite lower case numbers. The rarity of occurrence for individual patients and the life-threatening situation necessitate a structured approach according to predetermined treatment algorithms. This can then be carried out according to the established algorithm. Furthermore, this algorithm presents the opportunity to train for emergency situations in an interdisciplinary team.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose This study investigated satisfaction with treatment decision (SWTD), decision-making preferences (DMP), and main treatment goals, as well as evaluated factors that predict SWTD, in patients receiving palliative cancer treatment at a Swiss oncology network. Patients and methods Patients receiving a new line of palliative treatment completed a questionnaire 4–6 weeks after the treatment decision. Patient questionnaires were used to collect data on sociodemographics, SWTD (primary outcome measure), main treatment goal, DMP, health locus of control (HLoC), and several quality of life (QoL) domains. Predictors of SWTD (6 = worst; 30 = best) were evaluated by uni- and multivariate regression models. Results Of 480 participating patients in eight hospitals and two private practices, 445 completed all questions regarding the primary outcome measure. Forty-five percent of patients preferred shared, while 44 % preferred doctor-directed, decision-making. Median duration of consultation was 30 (range: 10–200) minutes. Overall, 73 % of patients reported high SWTD (≥24 points). In the univariate analyses, global and physical QoL, performance status, treatment goal, HLoC, prognosis, and duration of consultation were significant predictors of SWTD. In the multivariate analysis, the only significant predictor of SWTD was duration of consultation (p = 0.01). Most patients indicated hope for improvement (46 %), followed by hope for longer life (26 %) and better quality of life (23 %), as their main treatment goal. Conclusion Our results indicate that high SWTD can be achieved in most patients with a 30-min consultation. Determining the patient’s main treatment goal and DMP adds important information that should be considered before discussing a new line of palliative treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Any image processing object detection algorithm somehow tries to integrate the object light (Recognition Step) and applies statistical criteria to distinguish objects of interest from other objects or from pure background (Decision Step). There are various possibilities how these two basic steps can be realized, as can be seen in the different proposed detection methods in the literature. An ideal detection algorithm should provide high recognition sensitiv ity with high decision accuracy and require a reasonable computation effort . In reality, a gain in sensitivity is usually only possible with a loss in decision accuracy and with a higher computational effort. So, automatic detection of faint streaks is still a challenge. This paper presents a detection algorithm using spatial filters simulating the geometrical form of possible streaks on a CCD image. This is realized by image convolution. The goal of this method is to generate a more or less perfect match between a streak and a filter by varying the length and orientation of the filters. The convolution answers are accepted or rejected according to an overall threshold given by the ackground statistics. This approach yields as a first result a huge amount of accepted answers due to filters partially covering streaks or remaining stars. To avoid this, a set of additional acceptance criteria has been included in the detection method. All criteria parameters are justified by background and streak statistics and they affect the detection sensitivity only marginally. Tests on images containing simulated streaks and on real images containing satellite streaks show a very promising sensitivity, reliability and running speed for this detection method. Since all method parameters are based on statistics, the true alarm, as well as the false alarm probability, are well controllable. Moreover, the proposed method does not pose any extraordinary demands on the computer hardware and on the image acquisition process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose the distributed bees algorithm (DBA) for task allocation in a swarm of robots. In the proposed scenario, task allocation consists in assigning the robots to the found targets in a 2-D arena. The expected distribution is obtained from the targets' qualities that are represented as scalar values. Decision-making mechanism is distributed and robots autonomously choose their assignments taking into account targets' qualities and distances. We tested the scalability of the proposed DBA algorithm in terms of number of robots and number of targets. For that, the experiments were performed in the simulator for various sets of parameters, including number of robots, number of targets, and targets' utilities. Control parameters inherent to DBA were tuned to test how they affect the final robot distribution. The simulation results show that by increasing the robot swarm size, the distribution error decreased.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the advancement of both, information technology in general, and databases in particular; data storage devices are becoming cheaper and data processing speed is increasing. As result of this, organizations tend to store large volumes of data holding great potential information. Decision Support Systems, DSS try to use the stored data to obtain valuable information for organizations. In this paper, we use both data models and use cases to represent the functionality of data processing in DSS following Software Engineering processes. We propose a methodology to develop DSS in the Analysis phase, respective of data processing modeling. We have used, as a starting point, a data model adapted to the semantics involved in multidimensional databases or data warehouses, DW. Also, we have taken an algorithm that provides us with all the possible ways to automatically cross check multidimensional model data. Using the aforementioned, we propose diagrams and descriptions of use cases, which can be considered as patterns representing the DSS functionality, in regard to DW data processing, DW on which DSS are based. We highlight the reusability and automation benefits that this can be achieved, and we think this study can serve as a guide in the development of DSS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to propose a multi-criteria optimization and decision-making technique to solve food engineering problems. This technique was demostrated using experimental data obtained on osmotic dehydratation of carrot cubes in a sodium chloride solution. The Aggregating Functions Approach, the Adaptive Random Search Algorithm, and the Penalty Functions Approach were used in this study to compute the initial set of non-dominated or Pareto-optimal solutions. Multiple non-linear regression analysis was performed on a set of experimental data in order to obtain particular multi-objective functions (responses), namely water loss, solute gain, rehydration ratio, three different colour criteria of rehydrated product, and sensory evaluation (organoleptic quality). Two multi-criteria decision-making approaches, the Analytic Hierarchy Process (AHP) and the Tabular Method (TM), were used simultaneously to choose the best alternative among the set of non-dominated solutions. The multi-criteria optimization and decision-making technique proposed in this study can facilitate the assessment of criteria weights, giving rise to a fairer, more consistent, and adequate final compromised solution or food process. This technique can be useful to food scientists in research and education, as well as to engineers involved in the improvement of a variety of food engineering processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Automatic blood glucose classification may help specialists to provide a better interpretation of blood glucose data, downloaded directly from patients glucose meter and will contribute in the development of decision support systems for gestational diabetes. This paper presents an automatic blood glucose classifier for gestational diabetes that compares 6 different feature selection methods for two machine learning algorithms: neural networks and decision trees. Three searching algorithms, Greedy, Best First and Genetic, were combined with two different evaluators, CSF and Wrapper, for the feature selection. The study has been made with 6080 blood glucose measurements from 25 patients. Decision trees with a feature set selected with the Wrapper evaluator and the Best first search algorithm obtained the best accuracy: 95.92%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We apply diffusion strategies to propose a cooperative reinforcement learning algorithm, in which agents in a network communicate with their neighbors to improve predictions about their environment. The algorithm is suitable to learn off-policy even in large state spaces. We provide a mean-square-error performance analysis under constant step-sizes. The gain of cooperation in the form of more stability and less bias and variance in the prediction error, is illustrated in the context of a classical model. We show that the improvement in performance is especially significant when the behavior policy of the agents is different from the target policy under evaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The global economic structure, with its decentralized production and the consequent increase in freight traffic all over the world, creates considerable problems and challenges for the freight transport sector. This situation has led shipping to become the most suitable and cheapest way to transport goods. Thus, ports are configured as nodes with critical importance in the logistics supply chain as a link between two transport systems, sea and land. Increase in activity at seaports is producing three undesirable effects: increasing road congestion, lack of open space in port installations and a significant environmental impact on seaports. These adverse effects can be mitigated by moving part of the activity inland. Implementation of dry ports is a possible solution and would also provide an opportunity to strengthen intermodal solutions as part of an integrated and more sustainable transport chain, acting as a link between road and railway networks. In this sense, implementation of dry ports allows the separation of the links of the transport chain, thus facilitating the shortest possible routes for the lowest capacity and most polluting means of transport. Thus, the decision of where to locate a dry port demands a thorough analysis of the whole logistics supply chain, with the objective of transferring the largest volume of goods possible from road to more energy efficient means of transport, like rail or short-sea shipping, that are less harmful to the environment. However, the decision of where to locate a dry port must also ensure the sustainability of the site. Thus, the main goal of this article is to research the variables influencing the sustainability of dry port location and how this sustainability can be evaluated. With this objective, in this paper we present a methodology for assessing the sustainability of locations by the use of Multi-Criteria Decision Analysis (MCDA) and Bayesian Networks (BNs). MCDA is used as a way to establish a scoring, whilst BNs were chosen to eliminate arbitrariness in setting the weightings using a technique that allows us to prioritize each variable according to the relationships established in the set of variables. In order to determine the relationships between all the variables involved in the decision, giving us the importance of each factor and variable, we built a K2 BN algorithm. To obtain the scores of each variable, we used a complete cartography analysed by ArcGIS. Recognising that setting the most appropriate location to place a dry port is a geographical multidisciplinary problem, with significant economic, social and environmental implications, we consider 41 variables (grouped into 17 factors) which respond to this need. As a case of study, the sustainability of all of the 10 existing dry ports in Spain has been evaluated. In this set of logistics platforms, we found that the most important variables for achieving sustainability are those related to environmental protection, so the sustainability of the locations requires a great respect for the natural environment and the urban environment in which they are framed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Los hipergrafos dirigidos se han empleado en problemas relacionados con lógica proposicional, bases de datos relacionales, linguística computacional y aprendizaje automático. Los hipergrafos dirigidos han sido también utilizados como alternativa a los grafos (bipartitos) dirigidos para facilitar el estudio de las interacciones entre componentes de sistemas complejos que no pueden ser fácilmente modelados usando exclusivamente relaciones binarias. En este contexto, este tipo de representación es conocida como hiper-redes. Un hipergrafo dirigido es una generalización de un grafo dirigido especialmente adecuado para la representación de relaciones de muchos a muchos. Mientras que una arista en un grafo dirigido define una relación entre dos de sus nodos, una hiperarista en un hipergrafo dirigido define una relación entre dos conjuntos de sus nodos. La conexión fuerte es una relación de equivalencia que divide el conjunto de nodos de un hipergrafo dirigido en particiones y cada partición define una clase de equivalencia conocida como componente fuertemente conexo. El estudio de los componentes fuertemente conexos de un hipergrafo dirigido puede ayudar a conseguir una mejor comprensión de la estructura de este tipo de hipergrafos cuando su tamaño es considerable. En el caso de grafo dirigidos, existen algoritmos muy eficientes para el cálculo de los componentes fuertemente conexos en grafos de gran tamaño. Gracias a estos algoritmos, se ha podido averiguar que la estructura de la WWW tiene forma de “pajarita”, donde más del 70% del los nodos están distribuidos en tres grandes conjuntos y uno de ellos es un componente fuertemente conexo. Este tipo de estructura ha sido también observada en redes complejas en otras áreas como la biología. Estudios de naturaleza similar no han podido ser realizados en hipergrafos dirigidos porque no existe algoritmos capaces de calcular los componentes fuertemente conexos de este tipo de hipergrafos. En esta tesis doctoral, hemos investigado como calcular los componentes fuertemente conexos de un hipergrafo dirigido. En concreto, hemos desarrollado dos algoritmos para este problema y hemos determinado que son correctos y cuál es su complejidad computacional. Ambos algoritmos han sido evaluados empíricamente para comparar sus tiempos de ejecución. Para la evaluación, hemos producido una selección de hipergrafos dirigidos generados de forma aleatoria inspirados en modelos muy conocidos de grafos aleatorios como Erdos-Renyi, Newman-Watts-Strogatz and Barabasi-Albert. Varias optimizaciones para ambos algoritmos han sido implementadas y analizadas en la tesis. En concreto, colapsar los componentes fuertemente conexos del grafo dirigido que se puede construir eliminando ciertas hiperaristas complejas del hipergrafo dirigido original, mejora notablemente los tiempos de ejecucion de los algoritmos para varios de los hipergrafos utilizados en la evaluación. Aparte de los ejemplos de aplicación mencionados anteriormente, los hipergrafos dirigidos han sido también empleados en el área de representación de conocimiento. En concreto, este tipo de hipergrafos se han usado para el cálculo de módulos de ontologías. Una ontología puede ser definida como un conjunto de axiomas que especifican formalmente un conjunto de símbolos y sus relaciones, mientras que un modulo puede ser entendido como un subconjunto de axiomas de la ontología que recoge todo el conocimiento que almacena la ontología sobre un conjunto especifico de símbolos y sus relaciones. En la tesis nos hemos centrado solamente en módulos que han sido calculados usando la técnica de localidad sintáctica. Debido a que las ontologías pueden ser muy grandes, el cálculo de módulos puede facilitar las tareas de re-utilización y mantenimiento de dichas ontologías. Sin embargo, analizar todos los posibles módulos de una ontología es, en general, muy costoso porque el numero de módulos crece de forma exponencial con respecto al número de símbolos y de axiomas de la ontología. Afortunadamente, los axiomas de una ontología pueden ser divididos en particiones conocidas como átomos. Cada átomo representa un conjunto máximo de axiomas que siempre aparecen juntos en un modulo. La decomposición atómica de una ontología es definida como un grafo dirigido de tal forma que cada nodo del grafo corresponde con un átomo y cada arista define una dependencia entre una pareja de átomos. En esta tesis introducimos el concepto de“axiom dependency hypergraph” que generaliza el concepto de descomposición atómica de una ontología. Un modulo en una ontología correspondería con un componente conexo en este tipo de hipergrafos y un átomo de una ontología con un componente fuertemente conexo. Hemos adaptado la implementación de nuestros algoritmos para que funcionen también con axiom dependency hypergraphs y poder de esa forma calcular los átomos de una ontología. Para demostrar la viabilidad de esta idea, hemos incorporado nuestros algoritmos en una aplicación que hemos desarrollado para la extracción de módulos y la descomposición atómica de ontologías. A la aplicación la hemos llamado HyS y hemos estudiado sus tiempos de ejecución usando una selección de ontologías muy conocidas del área biomédica, la mayoría disponibles en el portal de Internet NCBO. Los resultados de la evaluación muestran que los tiempos de ejecución de HyS son mucho mejores que las aplicaciones más rápidas conocidas. ABSTRACT Directed hypergraphs are an intuitive modelling formalism that have been used in problems related to propositional logic, relational databases, computational linguistic and machine learning. Directed hypergraphs are also presented as an alternative to directed (bipartite) graphs to facilitate the study of the interactions between components of complex systems that cannot naturally be modelled as binary relations. In this context, they are known as hyper-networks. A directed hypergraph is a generalization of a directed graph suitable for representing many-to-many relationships. While an edge in a directed graph defines a relation between two nodes of the graph, a hyperedge in a directed hypergraph defines a relation between two sets of nodes. Strong-connectivity is an equivalence relation that induces a partition of the set of nodes of a directed hypergraph into strongly-connected components. These components can be collapsed into single nodes. As result, the size of the original hypergraph can significantly be reduced if the strongly-connected components have many nodes. This approach might contribute to better understand how the nodes of a hypergraph are connected, in particular when the hypergraphs are large. In the case of directed graphs, there are efficient algorithms that can be used to compute the strongly-connected components of large graphs. For instance, it has been shown that the macroscopic structure of the World Wide Web can be represented as a “bow-tie” diagram where more than 70% of the nodes are distributed into three large sets and one of these sets is a large strongly-connected component. This particular structure has been also observed in complex networks in other fields such as, e.g., biology. Similar studies cannot be conducted in a directed hypergraph because there does not exist any algorithm for computing the strongly-connected components of the hypergraph. In this thesis, we investigate ways to compute the strongly-connected components of directed hypergraphs. We present two new algorithms and we show their correctness and computational complexity. One of these algorithms is inspired by Tarjan’s algorithm for directed graphs. The second algorithm follows a simple approach to compute the stronglyconnected components. This approach is based on the fact that two nodes of a graph that are strongly-connected can also reach the same nodes. In other words, the connected component of each node is the same. Both algorithms are empirically evaluated to compare their performances. To this end, we have produced a selection of random directed hypergraphs inspired by existent and well-known random graphs models like Erd˝os-Renyi and Newman-Watts-Strogatz. Besides the application examples that we mentioned earlier, directed hypergraphs have also been employed in the field of knowledge representation. In particular, they have been used to compute the modules of an ontology. An ontology is defined as a collection of axioms that provides a formal specification of a set of terms and their relationships; and a module is a subset of an ontology that completely captures the meaning of certain terms as defined in the ontology. In particular, we focus on the modules computed using the notion of syntactic locality. As ontologies can be very large, the computation of modules facilitates the reuse and maintenance of these ontologies. Analysing all modules of an ontology, however, is in general not feasible as the number of modules grows exponentially in the number of terms and axioms of the ontology. Nevertheless, the modules can succinctly be represented using the Atomic Decomposition of an ontology. Using this representation, an ontology can be partitioned into atoms, which are maximal sets of axioms that co-occur in every module. The Atomic Decomposition is then defined as a directed graph such that each node correspond to an atom and each edge represents a dependency relation between two atoms. In this thesis, we introduce the notion of an axiom dependency hypergraph which is a generalization of the atomic decomposition of an ontology. A module in the ontology corresponds to a connected component in the hypergraph, and the atoms of the ontology to the strongly-connected components. We apply our algorithms for directed hypergraphs to axiom dependency hypergraphs and in this manner, we compute the atoms of an ontology. To demonstrate the viability of this approach, we have implemented the algorithms in the application HyS which computes the modules of ontologies and calculate their atomic decomposition. In the thesis, we provide an experimental evaluation of HyS with a selection of large and prominent biomedical ontologies, most of which are available in the NCBO Bioportal. HyS outperforms state-of-the-art implementations in the tasks of extracting modules and computing the atomic decomposition of these ontologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Action selection and organization are very complex processes that need to exploit contextual information and the retrieval of previously memorized information, as well as the integration of these different types of data. On the basis of anatomical connection with premotor and parietal areas involved in action goal coding, and on the data about the literature it seems appropriate to suppose that one of the most candidate involved in the selection of neuronal pools for the selection and organization of intentional actions is the prefrontal cortex. We recorded single ventrolateral prefrontal (VLPF) neurons activity while monkeys performed simple and complex manipulative actions aimed at distinct final goals, by employing a modified and more strictly controlled version of the grasp-to-eat(a food pellet)/grasp-to-place(an object) paradigm used in previous studies on parietal (Fogassi et al., 2005) and premotor neurons (Bonini et al., 2010). With this task we have been able both to evaluate the processing and integration of distinct (visual and auditory) contextual sequentially presented information in order to select the forthcoming action to perform and to examine the possible presence of goal-related activity in this portion of cortex. Moreover, we performed an observation task to clarify the possible contribution of VLPF neurons to the understanding of others’ goal-directed actions. Simple Visuo Motor Task (sVMT). We found four main types of neurons: unimodal sensory-driven, motor-related, unimodal sensory-and-motor, and multisensory neurons. We found a substantial number of VLPF neurons showing both a motor-related discharge and a visual presentation response (sensory-and-motor neurons), with remarkable visuo-motor congruence for the preferred target. Interestingly the discharge of multisensory neurons reflected a behavioural decision independently from the sensory modality of the stimulus allowing the monkey to make it: some encoded a decision to act/refraining from acting (the majority), while others specified one among the four behavioural alternatives. Complex Visuo Motor Task (cVMT). The cVMT was similar to the sVMT, but included a further grasping motor act (grasping a lid in order to remove it, before grasping the target) and was run in two modalities: randomized and in blocks. Substantially, motor-related and sensory-and-motor neurons tested in the cVMTrandomized were activated already during the first grasping motor act, but the selectivity for one of the two graspable targets emerged only during the execution of the second grasping. In contrast, when the cVMT was run in block, almost all these neurons not only discharged during the first grasping motor act, but also displayed the same target selectivity showed in correspondence of the hand contact with the target. Observation Task (OT). A great part of the neurons active during the OT showed a firing rate modulation in correspondence with the action performed by the experimenter. Among them, we found neurons significantly activated during the observation of the experimenter’s action (action observation-related neurons) and neurons responding not only to the action observation, but also to the presented cue stimuli (sensory-and-action observation-related neurons. Among the neurons of the first set, almost the half displayed a target selectivity, with a not clear difference between the two presented targets; Concerning to the second neuronal set, sensory-and-action related neurons, we found a low target selectivity and a not strictly congruence between the selectivity exhibited in the visual response and in the action observation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an extension of the logic outer-approximation algorithm for dealing with disjunctive discrete-continuous optimal control problems whose dynamic behavior is modeled in terms of differential-algebraic equations. Although the proposed algorithm can be applied to a wide variety of discrete-continuous optimal control problems, we are mainly interested in problems where disjunctions are also present. Disjunctions are included to take into account only certain parts of the underlying model which become relevant under some processing conditions. By doing so the numerical robustness of the optimization algorithm improves since those parts of the model that are not active are discarded leading to a reduced size problem and avoiding potential model singularities. We test the proposed algorithm using three examples of different complex dynamic behavior. In all the case studies the number of iterations and the computational effort required to obtain the optimal solutions is modest and the solutions are relatively easy to find.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Outliers are objects that show abnormal behavior with respect to their context or that have unexpected values in some of their parameters. In decision-making processes, information quality is of the utmost importance. In specific applications, an outlying data element may represent an important deviation in a production process or a damaged sensor. Therefore, the ability to detect these elements could make the difference between making a correct and an incorrect decision. This task is complicated by the large sizes of typical databases. Due to their importance in search processes in large volumes of data, researchers pay special attention to the development of efficient outlier detection techniques. This article presents a computationally efficient algorithm for the detection of outliers in large volumes of information. This proposal is based on an extension of the mathematical framework upon which the basic theory of detection of outliers, founded on Rough Set Theory, has been constructed. From this starting point, current problems are analyzed; a detection method is proposed, along with a computational algorithm that allows the performance of outlier detection tasks with an almost-linear complexity. To illustrate its viability, the results of the application of the outlier-detection algorithm to the concrete example of a large database are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"UILU-ENG 79 1747"--Cover.