996 resultados para dc distribution
Resumo:
"December 1990."
Resumo:
"18 June 1987."
Resumo:
"January 1983."
Resumo:
"July 1977."
Resumo:
"September 1976."
Resumo:
"October 1968."
Resumo:
This work focuses on the design of high-efficient DC-DC converters based on WBG power devices. The first objective is the development of an isolated bidirectional converter for the distribution network of future electrical aircrafts. A SiC-based Dual Active Bridge converter is designed and fabricated. Control strategies for individual and parallel operations are investigated and implemented into a FPGA platform. Experimental results on 1.2kW 270V/28V prototype are presented to confirm the proper behavior of the proposed solution. The second project belongs to the field of photovoltaic systems and aims to develop a three-port converter with multiple power elements interfacing capability. A GaN-based Triple Active Bridge has been designed, regarding both the controller and the hardware realization.
Resumo:
This project is funded by European Research Council in FP7; grant no 259328, 2010 and EPSRC grant no EP/K006428/1, 2013.
Resumo:
This project is funded by European Research Council in FP7; grant no 259328, 2010 and EPSRC grant no EP/K006428/1, 2013.
Resumo:
The California sea otter population is gradually expanding in size and geographic range and is consequently invading new feeding grounds, including bays and estuaries that are home to extensive populations of bivalve prey. One such area is the Elkhorn Slough, where otters have apparently established a spring and summer communal feeding and resting area. In anticipation of future otter foraging in the slough, an extensive baseline database on bivalve densities, size distributions, biomasses, and burrow depths has been established for three potential bivalve prey species, Saxidomus nuttalli, Tresus nutallii, and Zirphaea pilsbryi. In 1986, the Elkhorn Slough otters were foraging predominately at two areas immediately east and west of the Highway 1 bridge (Skipper's and the PG&E Outfall). Extensive subtidal populations of Saxidomus nuttalli and Tresus nuttallii occur in these areas. Shell records collected at these study areas indicated that sea otters were foraging selectively on Saxidomus over Tresus. The reason for this apparent preference was not clear. At the Skipper's study site, 51% of the shell record was composed of Saxidomus, yet this species accounted for only 16% of the in situ biomass, and only 39% of the available clams. Tresus represented 49% of the shell record at Skipper's, yet this species accounted for 84% of the in situ biomass and 61% of the available clams. There was no difference in mean burrow depth between the two species at this site so availability does not explain the disparity in consumption. At the PG&E Outfall, Saxidomus represents 66% of the in situ biomass and 81% of the available clams, while Tresus accounts for 34% of the in situ biomass and 19% of the available clams. Saxidomus accounts for 96% of the shell record at this site vs. 4% for Tresus, again indicating that the otters were preying on Saxidomus out of proportion to their density or biomass. High densities and biomasses of a third species, Zirphaea pilsbryi, occur in areas where sea otters were observed to be foraging, yet no cast-off Zirphaea shells were found. Although it is possible this species was not represented in the shell record because the otters were simply chewing up the shells, it is more likely this species is avoided by sea otters. There were relatively few sea otters in the Elkhorn Slough in 1986 compared to the previous two years. This, coupled with high bivalve densities, precluded any quantitative comparison of bivalve densities before and after the 1986 sea otter occupation. Qualitative observations made during the course of this study, and quantitative observations from previous studies indicate that, after 3 years, sea otters are not yet significantly affecting bivalve densities in the Elkhorn Slough.
Resumo:
Future power grids are envisioned to be serviced by heterogeneous arrangements of renewable energy sources. Due to their stochastic nature, energy storage distribution and management are pivotal in realizing microgrids serviced heavily by renewable energy assets. Identifying the required response characteristics to meet the operational requirements of a power grid are of great importance and must be illuminated in order to discern optimal hardware topologies. Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) presents the tools to identify such characteristics. By using energy storage as actuation within the closed loop controller, the response requirements may be identified while providing a decoupled controller solution. A DC microgrid servicing a fixed RC load through source and bus level storage managed by HSSPFC was realized in hardware. A procedure was developed to calibrate the DC microgrid architecture of this work to the reduced order model used by the HSSPFC law. Storage requirements were examined through simulation and experimental testing. Bandwidth contributions between feed forward and PI components of the HSSPFC law are illuminated and suggest the need for well-known system losses to prevent the need for additional overhead in storage allocations. The following work outlines the steps taken in realizing a DC microgrid and presents design considerations for system calibration and storage requirements per the closed loop controls for future DC microgrids.
Resumo:
Although various abutment connections and materials have recently been introduced, insufficient data exist regarding the effect of stress distribution on their mechanical performance. The purpose of this study was to investigate the effect of different abutment materials and platform connections on stress distribution in single anterior implant-supported restorations with the finite element method. Nine experimental groups were modeled from the combination of 3 platform connections (external hexagon, internal hexagon, and Morse tapered) and 3 abutment materials (titanium, zirconia, and hybrid) as follows: external hexagon-titanium, external hexagon-zirconia, external hexagon-hybrid, internal hexagon-titanium, internal hexagon-zirconia, internal hexagon-hybrid, Morse tapered-titanium, Morse tapered-zirconia, and Morse tapered-hybrid. Finite element models consisted of a 4×13-mm implant, anatomic abutment, and lithium disilicate central incisor crown cemented over the abutment. The 49 N occlusal loading was applied in 6 steps to simulate the incisal guidance. Equivalent von Mises stress (σvM) was used for both the qualitative and quantitative evaluation of the implant and abutment in all the groups and the maximum (σmax) and minimum (σmin) principal stresses for the numerical comparison of the zirconia parts. The highest abutment σvM occurred in the Morse-tapered groups and the lowest in the external hexagon-hybrid, internal hexagon-titanium, and internal hexagon-hybrid groups. The σmax and σmin values were lower in the hybrid groups than in the zirconia groups. The stress distribution concentrated in the abutment-implant interface in all the groups, regardless of the platform connection or abutment material. The platform connection influenced the stress on abutments more than the abutment material. The stress values for implants were similar among different platform connections, but greater stress concentrations were observed in internal connections.
Resumo:
In acquired immunodeficiency syndrome (AIDS) studies it is quite common to observe viral load measurements collected irregularly over time. Moreover, these measurements can be subjected to some upper and/or lower detection limits depending on the quantification assays. A complication arises when these continuous repeated measures have a heavy-tailed behavior. For such data structures, we propose a robust structure for a censored linear model based on the multivariate Student's t-distribution. To compensate for the autocorrelation existing among irregularly observed measures, a damped exponential correlation structure is employed. An efficient expectation maximization type algorithm is developed for computing the maximum likelihood estimates, obtaining as a by-product the standard errors of the fixed effects and the log-likelihood function. The proposed algorithm uses closed-form expressions at the E-step that rely on formulas for the mean and variance of a truncated multivariate Student's t-distribution. The methodology is illustrated through an application to an Human Immunodeficiency Virus-AIDS (HIV-AIDS) study and several simulation studies.
Resumo:
The aim of this study was to evaluate by photoelastic analysis stress distribution on short and long implants of two dental implant systems with 2-unit implant-supported fixed partial prostheses of 8 mm and 13 mm heights. Sixteen photoelastic models were divided into 4 groups: I: long implant (5 × 11 mm) (Neodent), II: long implant (5 × 11 mm) (Bicon), III: short implant (5 × 6 mm) (Neodent), and IV: short implants (5 × 6 mm) (Bicon). The models were positioned in a circular polariscope associated with a cell load and static axial (0.5 Kgf) and nonaxial load (15°, 0.5 Kgf) were applied to each group for both prosthetic crown heights. Three-way ANOVA was used to compare the factors implant length, crown height, and implant system (α = 0.05). The results showed that implant length was a statistically significant factor for both axial and nonaxial loading. The 13 mm prosthetic crown did not result in statistically significant differences in stress distribution between the implant systems and implant lengths studied, regardless of load type (P > 0.05). It can be concluded that short implants showed higher stress levels than long implants. Implant system and length was not relevant factors when prosthetic crown height were increased.
Resumo:
El Niño South Oscillation (ENSO) is one climatic phenomenon related to the inter-annual variability of global meteorological patterns influencing sea surface temperature and rainfall variability. It influences human health indirectly through extreme temperature and moisture conditions that may accelerate the spread of some vector-borne viral diseases, like dengue fever (DF). This work examines the spatial distribution of association between ENSO and DF in the countries of the Americas during 1995-2004, which includes the 1997-1998 El Niño, one of the most important climatic events of 20(th) century. Data regarding the South Oscillation index (SOI), indicating El Niño-La Niña activity, were obtained from Australian Bureau of Meteorology. The annual DF incidence (AIy) by country was computed using Pan-American Health Association data. SOI and AIy values were standardised as deviations from the mean and plotted in bars-line graphics. The regression coefficient values between SOI and AIy (rSOI,AI) were calculated and spatially interpolated by an inverse distance weighted algorithm. The results indicate that among the five years registering high number of cases (1998, 2002, 2001, 2003 and 1997), four had El Niño activity. In the southern hemisphere, the annual spatial weighted mean centre of epidemics moved southward, from 6° 31' S in 1995 to 21° 12' S in 1999 and the rSOI,AI values were negative in Cuba, Belize, Guyana and Costa Rica, indicating a synchrony between higher DF incidence rates and a higher El Niño activity. The rSOI,AI map allows visualisation of a graded surface with higher values of ENSO-DF associations for Mexico, Central America, northern Caribbean islands and the extreme north-northwest of South America.