699 resultados para data warehouse tuning aggregato business intelligence performance
Resumo:
Since 2007, close collaboration between the Learning and Teaching Unit’s Academic Quality and Standards team and the Department of Reporting and Analysis’ Business Objects team resulted in a generational approach to reporting where QUT established a place of trust. This place of trust is where data owners are confident in date storage, data integrity, reported and shared. While the role of the Department of Reporting and Analysis focused on the data warehouse, data security and publication of reports, the Academic Quality and Standards team focused on the application of learning analytics to solve academic research questions and improve student learning. Addressing questions such as: • Are all students who leave course ABC academically challenged? • Do the students who leave course XYZ stay within the faculty, university or leave? • When students withdraw from a unit do they stay enrolled on full or part load or leave? • If students enter through a particular pathway, what is their experience in comparison to other pathways? • With five years historic reporting, can a two-year predictive forecast provide any insight? In answering these questions, the Academic Quality and Standards team then developed prototype data visualisation through curriculum conversations with academic staff. Where these enquiries were applicable more broadly this information would be brought into the standardised reporting for the benefit of the whole institution. At QUT an annual report to the executive committees allows all stakeholders to record the performance and outcomes of all courses in a snapshot in time or use this live report at any point during the year. This approach to learning analytics was awarded the Awarded 2014 ATEM/Campus Review Best Practice Awards in Tertiary Education Management for The Unipromo Award for Excellence in Information Technology Management.
Resumo:
O sector do turismo é uma área francamente em crescimento em Portugal e que tem desenvolvido a sua divulgação e estratégia de marketing. Contudo, apenas se prende com indicadores de desempenho e de oferta instalada (número de quartos, hotéis, voos, estadias), deixando os indicadores estatísticos em segundo plano. De acordo com o “ Travel & tourism Competitiveness Report 2013”, do World Economic Forum, classifica Portugal em 72º lugar no que respeita à qualidade e cobertura da informação estatística, disponível para o sector do Turismo. Refira-se que Espanha ocupa o 3º lugar. Uma estratégia de mercado, sem base analítica, que sustente um quadro de orientações específico e objetivo, com relevante conhecimento dos mercados alvo, dificilmente é compreensível ou até mesmo materializável. A implementação de uma estrutura de Business Intelligence que permita a realização de um levantamento e tratamento de dados que possibilite relacionar e sustentar os resultados obtidos no sector do turismo revela-se fundamental e crucial, para que sejam criadas estratégias de mercado. Essas estratégias são realizadas a partir da informação dos turistas que nos visitam, e dos potenciais turistas, para que possam ser cativados no futuro. A análise das características e dos padrões comportamentais dos turistas permite definir perfis distintos e assim detetar as tendências de mercado, de forma a promover a oferta dos produtos e serviços mais adequados. O conhecimento obtido permite, por um lado criar e disponibilizar os produtos mais atrativos para oferecer aos turistas e por outro informá-los, de uma forma direcionada, da existência desses produtos. Assim, a associação de uma recomendação personalizada que, com base no conhecimento de perfis do turista proceda ao aconselhamento dos melhores produtos, revela-se como uma ferramenta essencial na captação e expansão de mercado.
Resumo:
É possível assistir nos dias de hoje, a um processo tecnológico evolutivo acentuado por toda a parte do globo. No caso das empresas, quer as pequenas, médias ou de grandes dimensões, estão cada vez mais dependentes dos sistemas informatizados para realizar os seus processos de negócio, e consequentemente à geração de informação referente aos negócios e onde, muitas das vezes, os dados não têm qualquer relacionamento entre si. A maioria dos sistemas convencionais informáticos não são projetados para gerir e armazenar informações estratégicas, impossibilitando assim que esta sirva de apoio como recurso estratégico. Portanto, as decisões são tomadas com base na experiência dos administradores, quando poderiam serem baseadas em factos históricos armazenados pelos diversos sistemas. Genericamente, as organizações possuem muitos dados, mas na maioria dos casos extraem pouca informação, o que é um problema em termos de mercados competitivos. Como as organizações procuram evoluir e superar a concorrência nas tomadas de decisão, surge neste contexto o termo Business Intelligence(BI). A GisGeo Information Systems é uma empresa que desenvolve software baseado em SIG (sistemas de informação geográfica) recorrendo a uma filosofia de ferramentas open-source. O seu principal produto baseia-se na localização geográfica dos vários tipos de viaturas, na recolha de dados, e consequentemente a sua análise (quilómetros percorridos, duração de uma viagem entre dois pontos definidos, consumo de combustível, etc.). Neste âmbito surge o tema deste projeto que tem objetivo de dar uma perspetiva diferente aos dados existentes, cruzando os conceitos BI com o sistema implementado na empresa de acordo com a sua filosofia. Neste projeto são abordados alguns dos conceitos mais importantes adjacentes a BI como, por exemplo, modelo dimensional, data Warehouse, o processo ETL e OLAP, seguindo a metodologia de Ralph Kimball. São também estudadas algumas das principais ferramentas open-source existentes no mercado, assim como quais as suas vantagens/desvantagens relativamente entre elas. Em conclusão, é então apresentada a solução desenvolvida de acordo com os critérios enumerados pela empresa como prova de conceito da aplicabilidade da área Business Intelligence ao ramo de Sistemas de informação Geográfica (SIG), recorrendo a uma ferramenta open-source que suporte visualização dos dados através de dashboards.
Resumo:
Les documents publiés par des entreprises, tels les communiqués de presse, contiennent une foule d’informations sur diverses activités des entreprises. C’est une source précieuse pour des analyses en intelligence d’affaire. Cependant, il est nécessaire de développer des outils pour permettre d’exploiter cette source automatiquement, étant donné son grand volume. Ce mémoire décrit un travail qui s’inscrit dans un volet d’intelligence d’affaire, à savoir la détection de relations d’affaire entre les entreprises décrites dans des communiqués de presse. Dans ce mémoire, nous proposons une approche basée sur la classification. Les méthodes de classifications existantes ne nous permettent pas d’obtenir une performance satisfaisante. Ceci est notamment dû à deux problèmes : la représentation du texte par tous les mots, qui n’aide pas nécessairement à spécifier une relation d’affaire, et le déséquilibre entre les classes. Pour traiter le premier problème, nous proposons une approche de représentation basée sur des mots pivots c’est-à-dire les noms d’entreprises concernées, afin de mieux cerner des mots susceptibles de les décrire. Pour le deuxième problème, nous proposons une classification à deux étapes. Cette méthode s’avère plus appropriée que les méthodes traditionnelles de ré-échantillonnage. Nous avons testé nos approches sur une collection de communiqués de presse dans le domaine automobile. Nos expérimentations montrent que les approches proposées peuvent améliorer la performance de classification. Notamment, la représentation du document basée sur les mots pivots nous permet de mieux centrer sur les mots utiles pour la détection de relations d’affaire. La classification en deux étapes apporte une solution efficace au problème de déséquilibre entre les classes. Ce travail montre que la détection automatique des relations d’affaire est une tâche faisable. Le résultat de cette détection pourrait être utilisé dans une analyse d’intelligence d’affaire.
Resumo:
A finales de 2009 se emprendió un nuevo modelo de segmentación de mercados por conglomeraciones o clústers, con el cual se busca atender las necesidades de los clientes, advirtiendo el ciclo de vida en el cual se encuentran, realizando estrategias que mejoren la rentabilidad del negocio, por medio de indicadores de gestión KPI. Por medio de análisis tecnológico se desarrolló el proceso de inteligencia de la segmentación, por medio del cual se obtuvo el resultado de clústers, que poseían características similares entre sí, pero que diferían de los otros, en variables de comportamiento. Esto se refleja en el desarrollo de campañas estratégicas dirigidas que permitan crear una estrecha relación de fidelidad con el cliente, para aumentar la rentabilidad, en principio, y fortalecer la relación a largo plazo, respondiendo a la razón de ser del negocio
Resumo:
Este trabajo de investigación explora el proceso de toma de decisiones fundamentado desde la perspectiva psicológica. El campo de interés está centrado en la toma de decisiones éticas a nivel organizacional y las consecuencias que las zonas grises o las conductas de riesgo repercuten en las dinámicas económicas y sociales. Con base en el análisis de los escándalos financieros más importantes de Europa, Estados Unidos y Colombia, y la literatura ofrecida por las ciencias sociales, la ética y las ciencias económicas se reconstruye una recopilación teórica de los aportes que los modelos psicológicos aplicados pueden dar al campo de la consultoría y el funcionamiento organizacional como también al estudio y análisis de los comportamientos anti éticos en empresas.
Resumo:
Embora o objectivo de redução de acidentes laborais seja frequentemente invocado para justificar uma aplicação preventiva de testes de álcool e drogas no trabalho, há poucas evidências estatisticamente relevantes das pressupostas causalidade e correlação negativa entre a sujeição aos testes e os posteriores acidentes. Os dados de testes e dos acidentes ocorridos com os colaboradores de uma transportadora ferroviária portuguesa de âmbito nacional, durante anos recentes, começam agora a ser explorados, em busca de relações entre estas e outras variáveis biográficas. - Although the aim of reducing occupational accidents is frequently cited to justify preventive drug and alcohol testing at work, there is little statistically significant evidence of the assumed causality and negative correlation between exposure to testing and subsequent accidents. Data mining of tests and accidents involving employees of a Portuguese national wide railway transportation company, during recent years, is now beginning in search of relations between these and other biographical variables.
Resumo:
As soluções informáticas de Customer Relationship Management (CRM) e os sistemas de suporte à informação, designados por Business Intelligence (BI), permitem a recolha de dados e a sua transformação em informação e em conhecimento, vital para diferenciação das organizações num Mundo globalizado e em constante mudança. A construção de um Data Warehouse corporativo é fundamental para as organizações que utilizam vários sistemas operacionais de modo a ser possível a agregação da informação. A Fundação INATEL – uma fundação privada de interesse público, 100% estatal – é um exemplo deste tipo de organização. Com uma base de dados de clientes superior a 250.000, atuando em áreas tão diferentes como sejam o Turismo, a Cultura e o Desporto, sustentado em mais de 25 sistemas informáticos autónomos. A base de estudo deste trabalho é a procura de identificação dos benefícios da implementação de um CRM Analítico na Fundação INATEL. Apresentando-se assim uma metodologia para a respetiva implementação e sugestão de um modelo de dados para a obtenção de uma visão única do cliente, acessível a toda a organização, de modo a garantir a total satisfação e consequente fidelização à marca INATEL. A disponibilização desta informação irá proporcionar um posicionamento privilegiado da Fundação INATEL e terá um papel fundamental na sua sustentabilidade económica.
Resumo:
Multiple versions of information and associated problems are well documented in both academic research and industry best practices. Many solutions have proposed a single version of the truth, with Business intelligence being adopted by many organizations. Business Intelligence (BI), however, is largely based on the collection of data, processing and presentation of information to meet different stakeholders’ requirement. This paper reviews the promise of Enterprise Intelligence, which promises to support decision-making based on a defined strategic understanding of the organizations goals and a unified version of the truth.
Resumo:
With the increasing awareness of protein folding disorders, the explosion of genomic information, and the need for efficient ways to predict protein structure, protein folding and unfolding has become a central issue in molecular sciences research. Molecular dynamics computer simulations are increasingly employed to understand the folding and unfolding of proteins. Running protein unfolding simulations is computationally expensive and finding ways to enhance performance is a grid issue on its own. However, more and more groups run such simulations and generate a myriad of data, which raises new challenges in managing and analyzing these data. Because the vast range of proteins researchers want to study and simulate, the computational effort needed to generate data, the large data volumes involved, and the different types of analyses scientists need to perform, it is desirable to provide a public repository allowing researchers to pool and share protein unfolding data. This paper describes efforts to provide a grid-enabled data warehouse for protein unfolding data. We outline the challenge and present first results in the design and implementation of the data warehouse.
Resumo:
This paper reviews the literature concerning the practice of using Online Analytical Processing (OLAP) systems to recall information stored by Online Transactional Processing (OLTP) systems. Such a review provides a basis for discussion on the need for the information that are recalled through OLAP systems to maintain the contexts of transactions with the data captured by the respective OLTP system. The paper observes an industry trend involving the use of OLTP systems to process information into data, which are then stored in databases without the business rules that were used to process information and data stored in OLTP databases without associated business rules. This includes the necessitation of a practice, whereby, sets of business rules are used to extract, cleanse, transform and load data from disparate OLTP systems into OLAP databases to support the requirements for complex reporting and analytics. These sets of business rules are usually not the same as business rules used to capture data in particular OLTP systems. The paper argues that, differences between the business rules used to interpret these same data sets, risk gaps in semantics between information captured by OLTP systems and information recalled through OLAP systems. Literature concerning the modeling of business transaction information as facts with context as part of the modelling of information systems were reviewed to identify design trends that are contributing to the design quality of OLTP and OLAP systems. The paper then argues that; the quality of OLTP and OLAP systems design has a critical dependency on the capture of facts with associated context, encoding facts with contexts into data with business rules, storage and sourcing of data with business rules, decoding data with business rules into the facts with the context and recall of facts with associated contexts. The paper proposes UBIRQ, a design model to aid the co-design of data with business rules storage for OLTP and OLAP purposes. The proposed design model provides the opportunity for the implementation and use of multi-purpose databases, and business rules stores for OLTP and OLAP systems. Such implementations would enable the use of OLTP systems to record and store data with executions of business rules, which will allow for the use of OLTP and OLAP systems to query data with business rules used to capture the data. Thereby ensuring information recalled via OLAP systems preserves the contexts of transactions as per the data captured by the respective OLTP system.
Resumo:
A decision support system (DSS) was implemented based on a fuzzy logic inference system (FIS) to provide assistance in dose alteration of Duodopa infusion in patients with advanced Parkinson’s disease, using data from motor state assessments and dosage. Three-tier architecture with an object oriented approach was used. The DSS has a web enabled graphical user interface that presents alerts indicating non optimal dosage and states, new recommendations, namely typical advice with typical dose and statistical measurements. One data set was used for design and tuning of the FIS and another data set was used for evaluating performance compared with actual given dose. Overall goodness-of-fit for the new patients (design data) was 0.65 and for the ongoing patients (evaluation data) 0.98. User evaluation is now ongoing. The system could work as an assistant to clinical staff for Duodopa treatment in advanced Parkinson’s disease.
Resumo:
This study aims to demonstrate that data from business games can be an important resource for improving efficiency and effectiveness of learning. The proposal presented here was developed from preliminary studies of data from Virtual Market games that pointed the possibility of identifying gaps in learning by analyzing the decisions of students. This proposal helps students to refine their learning processes and equips tutors with strategies for teaching and student assessment. The proposal also complements the group discussion and/or debriefing, which are widely used to enhance learning mediated by games. However, from a management perspective the model has the potential to be erroneous and miss opportunities, which cannot be detected because of the dependence on the characteristics of the individual, such as ability to communicate and work together. To illustrate the proposed technique, data sets from two business games were analyzed with the focus on managing working capital and it was found that students had difficulties managing this task. Similar trends were observed in all categories of students in the study-undergraduate, postgraduate and specialization. This discovery led us to the analysis of data for decisions made in the performance of the games, and it was determined that indicators could be developed that were capable of indentifying inconsistencies in the decisions. It was decided to apply some basic concepts of the finance management, such as management of the operational and non-operational expenditures, as well as production management concepts, such as the use of the production capacity. By analyzing the data from the Virtual Market games using the indicator concept, it was possible to detect the lack of domain knowledge of the students. Therefore, these indicators can be used to analyze the decisions of the players and guide them during the game, increasing their effectiveness and efficiency. As these indicators were developed from specific content, they can also be used to develop teaching materials to support learning. Viewed in this light, the proposal adds new possibilities for using business games in learning. In addition to the intrinsic learning that is achieved through playing the games, they also assist in driving the learning process. This study considers the applications and the methodology used.
Resumo:
The lack of proposals to evaluate the greening of business incubators or even of elementary discussions about the relations between incubators and the environment becomes apparent when researching this topic in the most prestigious scientific sources. To address this gap, this article reviews the literature on green management and smaller enterprises, business incubator performance and the greening of business incubators. This conceptual big-picture was used to identify variables relevant to the construction of a framework for assessing business incubators green performance. This framework was applied to six business incubators in Brazil. The results show the appropriated applicability of this framework. Furthermore, the empirical research led to the formulation of environmental maturity levels in order to classify business incubators performance. This paper seeks to offer a starting point for discussion and a proposal regarding the role of business incubators in a more sustainable society. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
Semi-supervised learning is applied to classification problems where only a small portion of the data items is labeled. In these cases, the reliability of the labels is a crucial factor, because mislabeled items may propagate wrong labels to a large portion or even the entire data set. This paper aims to address this problem by presenting a graph-based (network-based) semi-supervised learning method, specifically designed to handle data sets with mislabeled samples. The method uses teams of walking particles, with competitive and cooperative behavior, for label propagation in the network constructed from the input data set. The proposed model is nature-inspired and it incorporates some features to make it robust to a considerable amount of mislabeled data items. Computer simulations show the performance of the method in the presence of different percentage of mislabeled data, in networks of different sizes and average node degree. Importantly, these simulations reveals the existence of the critical points of the mislabeled subset size, below which the network is free of wrong label contamination, but above which the mislabeled samples start to propagate their labels to the rest of the network. Moreover, numerical comparisons have been made among the proposed method and other representative graph-based semi-supervised learning methods using both artificial and real-world data sets. Interestingly, the proposed method has increasing better performance than the others as the percentage of mislabeled samples is getting larger. © 2012 IEEE.