998 resultados para damped wave equation
Resumo:
Cilia and flagella are hairlike extensions of eukaryotic cells which generate oscillatory beat patterns that can propel micro-organisms and create fluid flows near cellular surfaces. The evolutionary highly conserved core of cilia and flagella consists of a cylindrical arrangement of nine microtubule doublets, called the axoneme. The axoneme is an actively bending structure whose motility results from the action of dynein motor proteins cross-linking microtubule doublets and generating stresses that induce bending deformations. The periodic beat patterns are the result of a mechanical feedback that leads to self-organized bending waves along the axoneme. Using a theoretical framework to describe planar beating motion, we derive a nonlinear wave equation that describes the fundamental Fourier mode of the axonemal beat. We study the role of nonlinearities and investigate how the amplitude of oscillations increases in the vicinity of an oscillatory instability. We furthermore present numerical solutions of the nonlinear wave equation for different boundary conditions. We find that the nonlinear waves are well approximated by the linearly unstable modes for amplitudes of beat patterns similar to those observed experimentally.
Resumo:
This article presents the principal results of the doctoral thesis “Direct Operational Methods in the Environment of a Computer Algebra System” by Margarita Spiridonova (Institute of mathematics and Informatics, BAS), successfully defended before the Specialised Academic Council for Informatics and Mathematical Modelling on 23 March, 2009.
Resumo:
Недю Иванов Попиванов, Алексей Йорданов Николов - През 1952 г. М. Протър формулира нови гранични задачи за вълновото уравнение, които са тримерни аналози на задачите на Дарбу в равнината. Задачите са разгледани в тримерна област, ограничена от две характеристични конуса и равнина. Сега, след като са минали повече от 50 години, е добре известно, че за безброй гладки функции в дясната страна на уравнението тези задачи нямат класически решения, а обобщеното решение има силна степенна особеност във върха на характеристичния конус, която е изолирана и не се разпространява по конуса. Тук ние разглеждаме трета гранична задача за вълновото уравнение с младши членове и дясна страна във формата на тригонометричен полином. Дадена е по-нова от досега известната априорна оценка за максимално възможната особеност на решенията на тази задача. Оказва се, че при по-общото уравнение с младши членове възможната сингулярност е от същия ред като при чисто вълновото уравнение.
Resumo:
It is shown that an electromagnetic wave equation in time domain is reduced in paraxial approximation to an equation similar to the Schrodinger equation but in which the time and space variables play opposite roles. This equation has solutions in form of time-varying pulses with the Airy function as an envelope. The pulses are generated by a source point with an Airy time varying field and propagate in vacuum preserving their shape and magnitude. The motion is according to a quadratic law with the velocity changing from infinity at the source point to zero in infinity. These one-dimensional results are extended to the 3D+time case when a similar Airy-Bessel pulse is excited by the field at a plane aperture. The same behaviour of the pulses, the non-diffractive preservation and their deceleration, is found. © 2011 IEEE.
Resumo:
This dissertation presents a calibration procedure for a pressure velocity probe. The dissertation is divided into four main chapters. The first chapter is divided into six main sections. In the firsts two, the wave equation in fluids and the velocity of sound in gases are calculated, the third section contains a general solution of the wave equation in the case of plane acoustic waves. Section four and five report the definition of the acoustic impedance and admittance, and the practical units the sound level is measured with, i.e. the decibel scale. Finally, the last section of the chapter is about the theory linked to the frequency analysis of a sound wave and includes the analysis of sound in bands and the discrete Fourier analysis, with the definition of some important functions. The second chapter describes different reference field calibration procedures that are used to calibrate the P-V probes, between them the progressive plane wave method, which is that has been used in this work. Finally, the last section of the chapter contains a description of the working principles of the two transducers that have been used, with a focus on the velocity one. The third chapter of the dissertation is devoted to the explanation of the calibration set up and the instruments used for the data acquisition and analysis. Since software routines were extremely important, this chapter includes a dedicated section on them and the proprietary routines most used are thoroughly explained. Finally, there is the description of the work that has been done, which is identified with three different phases, where the data acquired and the results obtained are presented. All the graphs and data reported were obtained through the Matlab® routine. As for the last chapter, it briefly presents all the work that has been done as well as an excursus on a new probe and on the way the procedure implemented in this dissertation could be applied in the case of a general field.
Resumo:
In this study wave propagation, dispersion relations, and energy relations for linear elastic periodic systems are analyzed. In particular, the dispersion relations for monoatomic chain of infinite dimension are obtained analytically by writing the Block-type wave equation for a unit cell in order to capture the dynamic behavior for chains under prescribed vibration. By comparing the discretized model (mass-spring chain) with the solid bar system, the nonlinearity of the dispersion relation for chain indicates that the periodic lattice is dispersive in contrast to the continuous rod, which is non dispersive. Further investigations have been performed considering one-dimensional diatomic linear elastic mass-spring chain. The dispersion relations, energy velocity, and group velocity have been derived. At certain range of frequencies harmonic plane waves do not propagate in contrast with monoatomic chain. Also, since the diatomic chain considered is a linear elastic chain, both of the energy velocity and the group velocity are identical. As long as the linear elastic condition is considered the results show zero flux condition without residual energy. In addition, this paper shows that the diatomic chain dispersion relations are independent on the unit cell scheme. Finally, an extension for the study covers the dispersion and energy relations for 2D- grid system. The 2x2 grid system show a periodicity of the dispersion surface in the wavenumber domain. In addition, the symmetry of the surface can be exploited to identify an Irreducible Brillouin Zone (IBZ). Compact representations of the dispersion properties of multidimensional periodic systems are obtained by plotting frequency as the wave vector’s components vary along the boundary of the IBZ, which leads to a widely accepted and effective visualization of bandgaps and overall dispersion properties.
Resumo:
In this paper, we use the approximation of shallow water waves (Margaritondo G 2005 Eur. J. Phys. 26 401) to understand the behaviour of a tsunami in a variable depth. We deduce the shallow water wave equation and the continuity equation that must be satisfied when a wave encounters a discontinuity in the sea depth. A short explanation about how the tsunami hit the west coast of India is given based on the refraction phenomenon. Our procedure also includes a simple numerical calculation suitable for undergraduate students in physics and engineering.
Resumo:
With the growth of energy consumption worldwide, conventional reservoirs, the reservoirs called "easy exploration and production" are not meeting the global energy demand. This has led many researchers to develop projects that will address these needs, companies in the oil sector has invested in techniques that helping in locating and drilling wells. One of the techniques employed in oil exploration process is the reverse time migration (RTM), in English, Reverse Time Migration, which is a method of seismic imaging that produces excellent image of the subsurface. It is algorithm based in calculation on the wave equation. RTM is considered one of the most advanced seismic imaging techniques. The economic value of the oil reserves that require RTM to be localized is very high, this means that the development of these algorithms becomes a competitive differentiator for companies seismic processing. But, it requires great computational power, that it still somehow harms its practical success. The objective of this work is to explore the implementation of this algorithm in unconventional architectures, specifically GPUs using the CUDA by making an analysis of the difficulties in developing the same, as well as the performance of the algorithm in the sequential and parallel version
Resumo:
In this work we study the existence and regularity of mild solutions for a damped second order abstract functional differential equation with impulses. The results are obtained using the cosine function theory and fixed point criterions. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
High-frequency beach water table fluctuations due to wave run-up and rundown have been observed in the field [Waddell, 1976]. Such fluctuations affect the infiltration/exfiltration process across the beach face and the interstitial oxygenation process in the beach ecosystem. Accurate representation of high-frequency water table fluctuations is of importance in the modeling of (1) the interaction between seawater and groundwater, more important, the effects on swash sediment transport and (2) the biological activities in the beach ecosystem. Capillarity effects provide a mechanism for high-frequency water table fluctuations. Previous modeling approaches adopted the assumption of saturated flow only and failed to predict the propagation of high-frequency fluctuations in the aquifer. In this paper we develop a modified kinematic boundary condition (kbc) for the water table which incorporates capillarity effects. The application of this kbc in a boundary element model enables the simulation of high-frequency water table fluctuations due to wave run-up. Numerical tests were carried out for a rectangular domain with small-amplitude oscillations; the behavior of water table responses was found to be similar to that predicted by an analytical solution based on the one-dimensional Boussinesq equation. The model was also applied to simulate the water table response to wave run-up on a doping beach. The results showed similar features of water table fluctuations observed in the field. In particular, these fluctuations are standing wave-like with the amplitude becoming increasingly damped inland. We conclude that the modified kbc presented here is a reasonable approximation of capillarity effects on beach water table fluctuations. However, further model validation is necessary before the model can confidently be used to simulate high-frequency water table fluctuations due to wave run-up.
Resumo:
In this paper we study the extended Tanh method to obtain some exact solutions of KdV-Burgers equation. The principle of the Tanh method has been explained and then apply to the nonlinear KdV- Burgers evolution equation. A finnite power series in tanh is considered as an ansatz and the symbolic computational system is used to obtain solution of that nonlinear evolution equation. The obtained solutions are all travelling wave solutions.
Resumo:
Baroclinic instability of perturbations described by the linearized primitive quations, growing on steady zonal jets on the sphere, can be understood in terms of the interaction of pairs of counter-propagating Rossby waves (CRWs). The CRWs can be viewed as the basic components of the dynamical system where the Hamiltonian is the pseudoenergy and each CRW has a zonal coordinate and pseudomomentum. The theory holds for adiabatic frictionless flow to the extent that truncated forms of pseudomomentum and pseudoenergy are globally conserved. These forms focus attention on Rossby wave activity. Normal mode (NM) dispersion relations for realistic jets are explained in terms of the two CRWs associated with each unstable NM pair. Although derived from the NMs, CRWs have the conceptual advantage that their structure is zonally untilted, and can be anticipated given only the basic state. Moreover, their zonal propagation, phase-locking and mutual interaction can all be understood by ‘PV-thinking’ applied at only two ‘home-bases’—potential vorticity (PV) anomalies at one home-base induce circulation anomalies, both locally and at the other home-base, which in turn can advect the PV gradient and modify PV anomalies there. At short wavelengths the upper CRW is focused in the mid-troposphere just above the steering level of the NM, but at longer wavelengths the upper CRW has a second wave-activity maximum at the tropopause. In the absence of meridional shear, CRW behaviour is very similar to that of Charney modes, while shear results in a meridional slant with height of the air-parcel displacement-structures of CRWs in sympathy with basic-state zonal angular-velocity surfaces. A consequence of this slant is that baroclinically growing eddies (on jets broader than the Rossby radius) must tilt downshear in the horizontal, giving rise to up-gradient momentum fluxes that tend to accelerate the barotropic component of the jet.
Resumo:
In this paper we consider the 2D Dirichlet boundary value problem for Laplace’s equation in a non-locally perturbed half-plane, with data in the space of bounded and continuous functions. We show uniqueness of solution, using standard Phragmen-Lindelof arguments. The main result is to propose a boundary integral equation formulation, to prove equivalence with the boundary value problem, and to show that the integral equation is well posed by applying a recent partial generalisation of the Fredholm alternative in Arens et al [J. Int. Equ. Appl. 15 (2003) pp. 1-35]. This then leads to an existence proof for the boundary value problem. Keywords. Boundary integral equation method, Water waves, Laplace’s
Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the $p$-version
Resumo:
Plane wave discontinuous Galerkin (PWDG) methods are a class of Trefftz-type methods for the spatial discretization of boundary value problems for the Helmholtz operator $-\Delta-\omega^2$, $\omega>0$. They include the so-called ultra weak variational formulation from [O. Cessenat and B. Després, SIAM J. Numer. Anal., 35 (1998), pp. 255–299]. This paper is concerned with the a priori convergence analysis of PWDG in the case of $p$-refinement, that is, the study of the asymptotic behavior of relevant error norms as the number of plane wave directions in the local trial spaces is increased. For convex domains in two space dimensions, we derive convergence rates, employing mesh skeleton-based norms, duality techniques from [P. Monk and D. Wang, Comput. Methods Appl. Mech. Engrg., 175 (1999), pp. 121–136], and plane wave approximation theory.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)