932 resultados para cysteine-protease


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many bacterial and viral pathogens (or their toxins), including Pseudomonas aeruginosa exotoxin A, require processing by host pro-protein convertases such as furin to cause dis- ease. We report the development of a novel irreversible inhibitor of furin (QUB-F1) consist- ing of a diphenyl phosphonate electrophilic warhead coupled with a substrate-like peptide (RVKR), that also includes a biotin tag, to facilitate activity-based profiling/visualisation. QUB-F1 displays greater selectivity for furin, in comparison to a widely used exemplar com- pound (furin I) which has a chloromethylketone warhead coupled to RVKR, when tested against the serine trypsin-like proteases (trypsin, prostasin and matriptase), factor Xa and the cysteine protease cathepsin B. We demonstrate QUB-F1 does not prevent P. aerugi- nosa exotoxin A-induced airway epithelial cell toxicity; in contrast to furin I, despite inhibiting cell surface furin-like activity to a similar degree. This finding indicates additional proteases, which are sensitive to the more broad-spectrum furin I compound, may be involved in this process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cysteine protease cathepsin C (CatC) activates granule-associated proinflammatory serine proteases in hematopoietic precursor cells. Its early inhibition in the bone marrow is regarded as a new therapeutic strategy for treating proteolysis-driven chronic inflammatory diseases, but its complete inhibition is elusive in vivo Controlling the activity of CatC may be achieved by directly inhibiting its activity with a specific inhibitor or/and by preventing its maturation. We have investigated immunochemically and kinetically the occurrence of CatC and its proform in human hematopoietic precursor cells and in differentiated mature immune cells in lung secretions. The maturation of proCatC obeys a multistep mechanism that can be entirely managed by CatS in neutrophilic precursor cells. CatS inhibition by a cell-permeable inhibitor abrogated the release of the heavy and light chains from proCatC and blocked ∼80% of CatC activity. Under these conditions the activity of neutrophil serine proteases, however, was not abolished in precursor cell cultures. In patients with neutrophilic lung inflammation, mature CatC is found in large amounts in sputa. It is secreted by activated neutrophils as confirmed through lipopolysaccharide administration in a nonhuman primate model. CatS inhibitors currently in clinical trials are expected to decrease the activity of neutrophilic CatC without affecting those of elastase-like serine proteases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite its long record of successful use in human vaccines, the mechanisms underlying the immunomodulatory effects of alum are not fully understood. Alum is a potent inducer of interleukin-1 (IL-1) secretion in vitro in dendritic cells and macrophages via Nucleotide-binding domain and leucine-rich repeat-containing (NLR) family, pyrin domain-containing 3 (NLRP3) inflammasome activation. However, the contribution of IL-1 to alum-induced innate and adaptive immune responses is controversial and the role of IL-1α following alum injection has not been addressed. This study shows that IL-1 is dispensable for alum-induced antibody and CD8 T cell responses to ovalbumin. However, IL-1 is essential for neutrophil infiltration into the injection site, while recruitment of inflammatory monocytes and eosinophils is IL-1 independent. Both IL-1α and IL-1β are released at the site of injection and contribute to the neutrophil response. Surprisingly, these effects are NLRP3-inflammasome independent as is the infiltration of other cell populations. However, while NLRP3 and caspase 1 were dispensable, alum-induced IL-1β at the injection site was dependent on the cysteine protease cathepsin S. Overall, these data demonstrate a previously unreported role for cathepsin S in IL-1β secretion, show that inflammasome formation is dispensable for alum-induced innate immunity and reveal that IL-1α and IL-1β are both necessary for alum-induced neutrophil influx in vivo.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Protease inhibitors from plants have been involved in defence mechanisms against pests and pathogens. Phytocystatins and trypsin/α-amylase inhibitors are two of the best characterized protease inhibitor families in plants. In barley, thirteen cystatins (HvCPI-1 to 13) and the BTI-CMe trypsin inhibitor have been previously studied. Their capacity to inhibit pest digestive proteases, and the negative in vivo effect caused by plants expressing these inhibitors on pests support the defence function of these proteins. Barley cystatins are also able to inhibit in vitro fungal growth. However, the antifungal effect of these inhibitors in vivo had not been previously tested. Moreover, their in vitro and in vivo effect on plant pathogenous bacteria is still unknown. In order to obtain new insights on this feature, in vitro assays were made against different bacterial and fungal pathogens of plants using the trypsin inhibitor BTI-CMe and the thirteen barley cystatins. Most barley cystatins and the BTI-CMe inhibitor were able to inhibit mycelial growth but no bacterial growth. Transgenic Arabidopsis plants independently expressing the BTI-CMe inhibitor and the cystatin HvCPI-6 were tested against the same bacterial and fungal pathogens. Neither the HvCPI-6 expressing transgenic plants nor the BTI-CMe ones were more resistant to plant pathogen fungi and bacteria than control Arabidopsis plants. The differences observed between the in vitro and in planta assays against phytopathogenic fungi are discussed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protease-activated receptor-2 (PAR2) is a G protein coupled receptor (GPCR) that is activated by proteolytic cleavage of its amino terminal domain by trypsin-like serine proteases. Cleavage of this receptor exposes a neoepitope, termed the tethered ligand (TL), which binds intramolecularly within the receptor to stimulate signal transduction via coupled G proteins. PAR2-mediated signal transduction is also experimentally stimulated by hexapeptides (agonist peptides; APs) that are homologous to the TL sequence. Due to the irreversible nature of PAR2 proteolysis, downstream signal transduction is tightly regulated. Following activation, PAR2 is rapidly uncoupled from downstream signalling by the post-translational modifications phosphorylation and ubiquination which facilitate interactions with â- arrestin. This scaffolding protein couples PAR2 to the internalisation machinery initiating its desensitisation and trafficking through the early and late endosomes followed by receptor degradation. PAR2 is widely expressed in mammalian tissues with key roles for this receptor in cardiovascular, respiratory, nervous and musculoskeletal systems. This receptor has also been linked to pathological states with aberrant expression and signalling noted in several cancers. In prostate cancer, PAR2 signalling induces migration and proliferation of tumour derived cell lines, while elevated receptor expression has been noted in malignant tissues. Importantly, a role for this receptor has also been suggested in prostate cancer bone metastasis as coexpression of PAR2 and a proteolytic activator has been demonstrated by immunohistochemical analysis. Based on these data, the primary focus of this project has been on two aspects of PAR2 biology. The first is characterisation of cellular mechanisms that regulate PAR2 signalling and trafficking. The second aspect is the role of this receptor in prostate cancer bone metastasis. In addition, to permit these studies, it was first necessary to evaluate the specificity of the commercially available anti-PAR2 antibodies SAM11, C17, N19 and H99. The evaluation of the four commercially available antibodies was assessed using four techniques: immunoprecipitation; Western blot analysis; immunofluorescence; and flow cytometry. These approaches demonstrated that three of the antibodies efficiently detect ectopically expressed PAR2 by each of these techniques. A significant finding from this study was that N19 was the only antibody able to specifically detect N-glycosylated endogenous PAR2 by Western blot analysis. This analysis was performed on lysates from prostate cancer derived cell lines and tissue derived from wildtype and PAR2 knockout mice. Importantly, further evaluation demonstrated that this antibody also efficiently detects endogenous PAR2 at the cell surface by flow cytometry. The anti-PAR2 antibody N19 was used to explore the in vitro role of palmitoylation, the post-translational addition of palmitate, in PAR2 signalling, trafficking, cell surface expression and desensitization. Significantly, use of the palmitoylation inhibitor 2-bromopalmitate indicated that palmitate addition is important in trafficking of PAR2 endogenously expressed by prostate cancer cell lines. This was supported by palmitate labelling experiments using two approaches which showed that PAR2 stably expressed by CHO cells is palmitoylated and that palmitoylation occurs on cysteine 361. Another key finding from this study is that palmitoylation is required for optimal PAR2 signalling as Ca2+ flux assays indicated that in response to trypsin agonism, palmitoylation deficient PAR2 is ~9 fold less potent than wildtype receptor with a reduction of about 33% in the maximum signal induced via the mutant receptor. Confocal microscopy, flow cytometry and cell surface biotinylation analyses demonstrated that palmitoylation is required for efficient cell surface expression of PAR2. Importantly, this study also identified that palmitoylation of this receptor within the Golgi apparatus is required for efficient agonist-induced rab11amediated trafficking of PAR2 to the cell surface. Interestingly, palmitoylation is also required for receptor desensitization, as agonist-induced â-arrestin recruitment and receptor degradation were markedly reduced in CHO-PAR2-C361A cells compared with CHO-PAR2 cells. Collectively, these data provide new insights on the life cycle of PAR2 and demonstrate that palmitoylation is critical for efficient signalling, trafficking, cell surface localization and degradation of this receptor. This project also evaluated PAR2 residues involved in ligand docking. Although the extracellular loop (ECL)2 of PAR2 is known to be required for agonist-induced signal transduction, the binding pocket for receptor agonists remains to be determined. In silico homology modelling, based on a crystal structure for the prototypical GPCR rhodopsin, and ligand docking were performed to identify PAR2 transmembrane (TM) amino acids potentially involved in agonist binding. These methods identified 12 candidate residues that were mutated to examine the binding site of the PAR2 TL, revealed by trypsin cleavage, as well as of the soluble ligands 2f-LIGRLO-NH2 and GB110, which are both structurally based on the AP SLIGRLNH2. Ligand binding was evaluated from the impact of the mutated residues on PAR2-mediated calcium mobilisation. An important finding from these experiments was that mutation of residues Y156 and Y326 significantly reduced 2f-LIGRLO-NH2 and GB110 agonist activity. L307 was also important for GB110 activity. Intriguingly, mutation of PAR2 residues did not alter trypsin-induced signalling to the same extent as for the soluble agonists. The reason for this difference remains to be further examined by in silico and in vitro experimentation and, potentially, crystal structure studies. However, these findings identified the importance of TM domains in PAR2 ligand docking and will enhance the design of both PAR2 agonists and potentially agents to inhibit signalling (antagonists). The potential importance of PAR2 in prostate cancer bone metastasis was examined using a mouse model. In patients, prostate cancer bone metastases cause bone growth by disrupting bone homeostasis. In an attempt to mimic prostate cancer growth in bone, PAR2 responsive 22Rv1 prostate cancer cells, which form mixed osteoblastic and osteolytic lesions, were injected into the proximal aspect of mouse tibiae. A role for PAR2 was assessed by treating these mice with the recently developed PAR2 antagonist GB88. As controls, animals bearing intra-tibial tumours were also treated with vehicle (olive oil) or the prostate cancer chemotherapeutic docetaxel. The effect of these treatments on bone was examined radiographically and by micro-CT. Consistent with previous studies, 22Rv1 tumours caused osteoblastic periosteal spicule formation and concurrent osteolytic bone loss. Significantly, blockade of PAR2 signalling reduced the osteoblastic and osteolytic phenotype of 22Rv1 tumours in bone. No bone defects were detected in mice treated with docetaxel. These qualitative data will be followed in the future by quantitative micro-CT analysis as well as histology and histomorphometry analysis of already collected tissues. Nonetheless, these preliminary experiments highlight a potential role for PAR2 in prostate cancer growth in bone. In summary, in vitro studies have defined mechanisms regulating PAR2 activation, downstream signalling and trafficking and in vivo studies point to a potential role for this receptor in prostate cancer bone metastasis. The outcomes of this project are that a greater understanding of the biology of PAR2 may lead to the development of strategies to modulate the function of this receptor in disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Serine proteinase inhibitors play important and diverse roles in biological processes such as coagulation, defense mechanisms, and immune responses. Here, we identified and characterized a Kunitz-type proteinase inhibitor, designated FcKuSPI, of the BPTI/Kunitz family of serine proteinase inhibitors from the hemocyte cDNA library of the shrimp Fenneropenaeus chinensis. The deduced amino acid sequence of FcKuSPI comprises 80 residues with a putative signal peptide of 15 amino acids. The predicted molecular weight of the mature peptide is 7.66 kDa and its predicted isoelectric point is 8.84. FcKuSPI includes a Kunitz domain containing six conserved cysteine residues that are predicted to form three disulfide bonds. FcKuSPI shares 44e53% homology with BPTI/Kunitz family members from other species. FcKuSPI mRNAwas expressed highly in the hemocytes and moderately in muscle in healthy shrimp. Recombinant FcKuSPI protein demonstrated anti-protease activity against trypsin and anticoagulant activity against citrated human plasma in a dose-dependent manner in in vitro assays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proteolytic enzymes have evolved several mechanisms to cleave peptide bonds. These distinct types have been systematically categorized in the MEROPS database. While a BLAST search on these proteases identifies homologous proteins, sequence alignment methods often fail to identify relationships arising from convergent evolution, exon shuffling, and modular reuse of catalytic units. We have previously established a computational method to detect functions in proteins based on the spatial and electrostatic properties of the catalytic residues (CLASP). CLASP identified a promiscuous serine protease scaffold in alkaline phosphatases (AP) and a scaffold recognizing a beta-lactam (imipenem) in a cold-active Vibrio AP. Subsequently, we defined a methodology to quantify promiscuous activities in a wide range of proteins. Here, we assemble a module which encapsulates the multifarious motifs used by protease families listed in the MEROPS database. Since APs and proteases are an integral component of outer membrane vesicles (OMV), we sought to query other OMV proteins, like phospholipase C (PLC), using this search module. Our analysis indicated that phosphoinositide-specific PLC from Bacillus cereus is a serine protease. This was validated by protease assays, mass spectrometry and by inhibition of the native phospholipase activity of PI-PLC by the well-known serine protease inhibitor AEBSF (IC50 = 0.018 mM). Edman degradation analysis linked the specificity of the protease activity to a proline in the amino terminal, suggesting that the PI-PLC is a prolyl peptidase. Thus, we propose a computational method of extending protein families based on the spatial and electrostatic congruence of active site residues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clip domain serine protease (cSP), characterized by conserved clip domains, is a new serine protease family identified mainly in arthropod, and plays important roles in development and immunity. In the present study, the full-length cDNA of a cSP (designated EscSP) was cloned from Chinese mitten crab Eriocheir sinensis by expressed sequence tags (ESTs) and PCR techniques. The 1380 bp EscSP cDNA contained a 1152 bp open reading frame (ORF) encoding a putative cSP of 383 amino acids, a 5'-untranslated region (UTR) of 54 bp, and a 3'-UTR of 174 bp. Multiple sequence alignment presented twelve conserved cysteine residues and a canonical catalytic triad (His(185), Asp(235) and Ser(332)) critical for the fundamental structure and function of EscSP. Two types of cSP domains, the clip domain and tryp_spc domain, were identified in the deduced amino acids sequence of EscSP. The conservation characteristics and similarities with previously known cSPs indicated that EscSP was a member of the large cSP family. The mRNA expression of EscSP in different tissues and the temporal expression in haemocytes challenged by Listonella anguillarum were measured by real-time RT-PCR. EscSP mRNA transcripts could be detected in all examined tissues, and were higher expressed in muscle than that in hepatopancreas. gill, gonad, haemocytes and heart. The EscSP mRNA expression in haemocytes was up-regulated after L anguillarum challenge and peaked at 2 h (4.96 fold, P < 0.05) and 12 h (9.90 fold, P < 0.05). Its expression pattern was similar to prophenoloxidase (EsproPO), one of the components of crab proPO system found in our previous report. These results implied that EscSP was involved in the processes of host-pathogen interaction probably as one of the proPO system members. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silicateins, members of the cathepsin L family, are enzymes that have been shown to be involved in the biosynthesis/condensation of biosilica in spicules from Demospongiae (phylum Porifera), e. g. Tethya aurantium and Suberites domuncula. The class Hexactinellida also forms spicules from this inorganic material. This class of sponges includes species that form the largest biogenic silica structures on earth. The giant basal spicules from the hexactinellids Monorhaphis chuni and Monorhaphis intermedia can reach lengths of up to 3 m and diameters of 10 mm. The giant spicules as well as the tauactines consist of a biosilica shell that surrounds the axial canal, which harbours the axial filament, in regular concentric, lamellar layers, suggesting an appositional growth of the spicules. The lamellae contain 27 kDa proteins, which undergo post-translational modification (phosphorylation), while total spicule extracts contain additional 70 kDa proteins. The 27 kDa proteins cross-reacted with anti-silicatein antibodies. The extracts of spicules from the hexactinellid Monorhaphis displayed proteolytic activity like the silicateins from the demosponge S. domuncula. Since the proteolytic activity in spicule extracts from both classes of sponge could be sensitively inhibited by E-64 (a specific cysteine proteinase inhibitor), we used a labelled E-64 sample as a probe to identify the protein that bound to this inhibitor on a blot. The experiments revealed that the labelled E-64 selectively recognized the 27 kDa protein. Our data strongly suggest that silicatein(-related) molecules are also present in Hexactinellida. These new results are considered to also be of impact for applied biotechnological studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Helminth parasites (nematodes, flatworms and cestodes) infect over 1 billion of the world's population causing high morbidity and mortality. The large tissue-dwelling worms express papain-like cysteine peptidases, termed cathepsins that play important roles in virulence including host entry, tissue migration and the suppression of host immune responses. Much of our knowledge of helminth cathepsins comes from studies using flatworms or trematode (fluke) parasites. The developmentally-regulated expression of these proteases correlates with the passage of parasites through host tissues and their encounters with different host macromolecules. Recent phylogenetic, biochemical and structural studies indicate that trematode cathepsins exhibit overlapping but distinct substrate specificities due to divergence within the protease active site. Here we provide an overview of the evolution, biochemistry and structure of these important enzymes and highlight how recent advances in proteomics and gene silencing techniques are allowing researchers to probe their biological functions. We focus mainly on members of the cathepsin L gene family of the animal and human pathogen, Fasciola hepatica, because of our deep understanding of their function, biochemistry and structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cysteine cathepsins are a family of closely related thiol proteases, normally found in the endosomal and lysosomal compartments of cells. A growing body of evidence has clearly linked the dysregulated activity of these proteases with many diseases and pathological conditions, offering therapeutic, prognostic and diagnostic potential. However, these proteases are synthesised as inactive precursors and once activated, are controlled by factors such as pH and presence of endogenous inhibitors, meaning that overall protein and activity levels do not necessarily correlate. In order to fully appreciate the role and potential of these proteases, tools are required that can detect and quantify overall cathepsin activity. Two main strategies have evolved; synthetic substrates and protease-labelling with affinity-binding probes (or activity-based probes). This review examines recent innovations in these approaches as the field moves towards developing tools that could ultimately be used in patients for diagnostic or prognostic applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protease inhibitors are found abundantly in numerous plants, animals and microorganisms, owing their significance to their application in the study of enzyme structures, reaction mechanisms and also their utilization in pharmacology and agriculture. They are (synthetic/natural) substances that act directly on proteases to lower the catalytic rate. Although most of these inhibitory proteins are directed against serine proteases, some target cysteine, aspartyl or metalloproteases (Bode and Huber, 1992). Protease inhibitors are essential for regulating the activity of their corresponding proteases and play key regulatory roles in many biological processes. Applications of protease inhibitors are intimately connected to the proteases they inhibit; an overview of proteases with the modes of regulation of their proteolytic activity is discussed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protease inhibitors are well known to have several applications in medicine and biotechnology. Several plant sources are known to return potential protease inhibitors. In this study plants belonging to different families of Leguminosae, Malvaceae, Rutaceae, Graminae and Moringaceae were screened for the protease inhibitor. Among them Moringa oleifera, belonging to the family Moringaceae, recorded high level of protease inhibitor activity after ammonium sulfate fractionation. M. oleifera, which grows throughout most of the tropics and having several industrial and medicinal uses, was selected as a source of protease inhibitor since so far no reports were made on isolation of the protease inhibitor. Among the different parts of M. oleifera tested, the crude extract isolated from the mature leaves and seeds showed the highest level of inhibition against trypsin. Among the various extraction media evaluated, the crude extract prepared in phosphate buffer showed maximum recovery of the protease inhibitor. The protease inhibitor recorded high inhibitory activity toward the serine proteases thrombin, elastase, chymotrypsin and the cysteine

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new series of organotelluranes were synthesized and investigated, and the structure-activity relationships in cysteine proteases inhibition were determinated. It was possible to identify the relevance of structural components linked to the reactivity of these compounds as inhibitors. For example, dibromo-organotelluranes showed to be more reactive than dichloro-organotelluranes towards cysteine cathepsins V and S. Besides, no remarkable enantio-selectivity was verified. In general the achiral organotelluranes were more reactive than the chiral congeners against cysteine cathepsins V and S. A reactivity order for organochalcogenanes and cysteine cathepsins was proposed after the comparison of the inhibitory potencies of organotelluranes with the related organoselenanes. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results from our laboratory revealed propolis activity on Giardia trophozoites proliferation. Since therapeutic agents can inhibit the activity of proteases related to relevant biologic and physiologic processes of parasites, this study was undertaken to characterise the proteolytic activity of excretory/secretory products (ESP) of trophozoites treated with propolis. ESP was obtained from culture supernatants of trophozoites exposed to 250 and 500 mu g mL(-1) of propolis. ESP were tested in sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the protein profiles and the protease activity was assayed in gelatin-containing gels. Synthetic inhibitors were used to characterise the protease classes. Treated and non-treated ESP showed a similar protein and hydrolysis pattern. A simple pattern of protein composed by five evident bands of approximately 167, 132, 79, 61 and 51 kDa was found, and the zymograms comprised hydrolysis zones distributed from > 170 to 23 kDa. No inhibition was seen on protease activity of propolis-treated trophozoites, whose hydrolysis pattern was similar to control. One may conclude that both ESP degraded gelatin and the activity was predominantly due to cysteine proteases. Although propolis had no effect on the proteolytic activity, further studies could identify the active constituents responsible for propolis antigiardial activity and their mechanisms of action.