987 resultados para cryptic splice site


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Alternative RNA splicing is a critical process that contributes variety to protein functions, and further controls cell differentiation and normal development. Although it is known that most eukaryotic genes produce multiple transcripts in which splice site selection is regulated, how RNA binding proteins cooperate to activate and repress specific splice sites is still poorly understood. In addition how the regulation of alternative splicing affects germ cell development is also not well known. In this study, Drosophila Transformer 2 (Tra2) was used as a model to explore both the mechanism of its repressive function on its own pre-mRNA splicing, and the effect of the splicing regulation on spermatogenesis in testis. Half-pint (Hfp), a protein known as splicing activator, was identified in an S2 cell-based RNAi screen as a co-repressor that functions in combination with Tra2 in the splicing repression of the M1 intron. Its repressive splicing function is found to be sequence specific and is dependent on both the weak 3’ splice site and an intronic splicing silencer within the M1 intron. In addition we found that in vivo, two forms of Hfp are expressed in a cell type specific manner. These alternative forms differ at their amino terminus affecting the presence of a region with four RS dipeptides. Using assays in Drosophila S2 cells, we determined that the alternative N terminal domain is necessary in repression. This difference is probably due to differential localization of the two isoforms in the nucleus and cytoplasm. Our in vivo studies show that both Hfp and Tra2 are required for normal spermatogenesis and cooperate in repression of M1 splicing in spermatocytes. But interestingly, Tra2 and Hfp antagonize each other’s function in regulating germline specific alternative splicing of Taf1 (TBP associated factor 1). Genetic and cytological studies showed that mutants of Hfp and Taf1 both cause similar defects in meiosis and spermatogenesis. These results suggest Hfp regulates normal spermatogenesis partially through the regulation of taf1 splicing. These observations indicate that Hfp regulates tra2 and taf1 activity and play an important role in germ cell differentiation of male flies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cells infected with the conditionally defective MuSVts110 mutant of Moloney murine sarcoma virus are transformed at 33$\sp\circ$C but appear morphologically normal at 39$\sp\circ$C. The molecular basis for this phenotype is as follows: MuSVts110 contains a 1487 nucleotide central deletion that has truncated the 3$\sp\prime$ end to the gag gene and the 5$\sp\prime$ end of the mos gene. The resulting gag-mos junction is out-of-frame and the v-mos protein is not expressed. At 33$\sp\circ$C or lower, a splicing event is activated such that a 431 base intron is removed to realign the gag and mos gene in-frame, allowing the expression of a transforming protein P85$\sp{gag-mos}$. Temperature-dependent splicing appeared to be an intrinsic property of MuSVts110 transcripts and not a general feature of pre-mRNA splicing in 6m2 cells since splicing activity of a heterologous transcript in the same cells did not vary with temperature. The possibility that the splice event was not temperature-sensitive, but that the accumulation of spliced transcript at the lower growth temperatures was due to its selective thermolability was ruled out as stability studies revealed that the relative turnover rates of the unspliced and spliced MuSVts110 transcripts were not affected by temperature.^ The consensus sequences containing the splice sites activated in the MuSVts110 mutant (5$\sp\prime$ gag and 3$\sp\prime$ mos) are present, but not utilized, in wild-type MuSV-124. To test the hypothesis that it was the reduction of the 1919 base intervening sequence in MuSV-124 to 431 bases in MuSVts110 which activated splicing, the identical 1487 base deletion was introduced into cloned wild-type MuSV-124 DNA to create the MuSVts110 equivalent, ts32.^ To examine conditions permissive for splicing, we assayed splice site activation in a series of MuSV-124 "intron-modification" mutants. Data suggest that splicing in wild-type MuSV-124 may be blocked due to the lack of a proximal branchpoint sequence, but can be activated by those intron mutations which reposition a branch site closer to the 3$\sp\prime$ splice site. (Abstract shortened with permission of author.) ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Viral systems have contributed tremendously to the understanding of eukaryotic molecular biology. The proportional pattern of retroviral RNA expression offers many clues into the alternative splicing of cellular transcripts. The MuSVts110 virus presents an unusual expression system, where the mechanistic combination of RNA splicing and cellular transformation can be physiologically manipulated. Splicing of MuSVts110 pre-mRNA occurs inefficiently (30%-50%) at 33$\sp\circ$C or below and is subdued at 39$\sp\circ$C ($<$5%). Like most alternatively spliced cellular and retroviral transcripts, the MuSVts110 pre-mRNA contains cis-acting intron and exon sequences that attenuate splicing. These include a splicing inhibitory sequence at the 3$\prime$ end of the MuSVts110 v-mos exon, called the E2 Distal Element (E2DE), and a sub-optimal 3$\prime$ splice site. The E2DE directly inhibits MuSVts110 RNA splicing in a sequence-specific fashion at 39$\sp\circ$C but not at 28$\sp\circ$C, potentially through the association of cellular factors. Inefficient MuSVts110 splicing is pre-dominantly attributed to the utilization of multiple weak branchpoint sequences located between $-113$ and $-34$ nucleotides upstream of the 3$\prime$ splice site. The molecular control of MuSVts110 splicing, represented primarily by scattered multiple inefficient branchpoint sequences that are conditionally modulated by the E2DE at higher growth temperatures, is discussed. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the most elegant and tightly regulated mechanisms for control of gene expression is alternative pre-mRNA splicing. Despite the importance of regulated splicing in a variety of biological processes relatively little is understood about the mechanisms by which specific alternative splice choices are made and regulated. The transformer-2 (tra-2) gene encodes a splicing regulator that controls the use of alternative splicing pathways in the sex determination cascade of D. melanogaster and is particularly interesting because it directs the splicing of several distinct pre-mRNAs in different manners. The tra-2 protein positively regulates the splicing of both doublesex (dsx) and fruitless (fru) pre-mRNAs. Additionally tra-2 controls exuperantia (exu) by directing the choices between splicing and cleavage/polyadenylation and autoregulates the tra-2 pre-mRNA processing by repressing the removal of a specific intron (called M1). The goal of this study is to identify the molecular mechanisms by which TRA-2 protein affects the alternative splicing of pre-mRNA deriving from the tra-2 gene itself.^ The autoregulation of M1 splicing plays a key role in regulation of the relative levels of two functionally distinct TRA-2 protein isoforms expressed in the male germline. We have examined whether the structure, function, and regulation of tra-2 are conserved in Drosophila virilis, a species diverged from D. melanogaster by over 60 million years. We find that the D. virilis homolog of tra-2 produces alternatively spliced RNAs encoding a set of protein isoforms analogous to those found in D. melanogaster. When introduced into the genome of D. melanogaster, this homolog can functionally replace the endogenous tra-2 gene for both normal female sexual differentiation and spermatogenesis. Examination of alternative pre-mRNAs produced in D. virilis testes suggests that the germline-specific autoregulation of tra-2 function is accomplished by a strategy similar to that used in D. melanogaster.^ To identify elements necessary for regulation of tra-2 M1 splicing, we mutagenized evolutionarily conserved sequences within the tra-2 M1 intron and flanking exons. Constructs containing these mutations were used to generate transgenic fly lines that have been tested for their ability to carry out autoregulation. These transgenic fly experiments elucidated several elements that are necessary for setting up a context under which tissue-specific regulation of M1 splicing can occur. These elements include a suboptimal 3$\sp\prime$ splice site, an element that has been conserved between D. virilis and D. melanogaster, and an element that resembles the 3$\sp\prime$ portion of a dsx repeat and other splicing enhancers.^ Although important contextual features of the tra-2 M1 intron have been delineated in the transgenic fly experiments, the specific RNA sequences that interact directly with the TRA-2 protein were not identified. Using Drosophila nuclear extracts from Schneider cells, we have shown that recombinant TRA-2 protein represses M1 splicing in vitro. UV crosslinking analysis suggests that the TRA-2 protein binds to several different sites within and near the M1 intron. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In Caenorhabditis elegans, pre-mRNA for the essential splicing factor U2AF65 sometimes is spliced to produce an RNA that includes an extra 216-bp internal exon, exon 3. Inclusion of exon 3 inserts an in-frame stop codon, yet this RNA is not subject to SMG-mediated RNA surveillance. To test whether exon 3 causes RNA to remain nuclear and thereby escape decay, we inserted it into the 3′ untranslated region of a gfp reporter gene. Although exon 3 did not affect accumulation or processing of the mRNA, it dramatically suppressed expression of green fluorescent protein (GFP). We showed by in situ hybridization that exon 3-containing gfp RNA is retained in the nucleus. Intriguingly, exon 3 contains 10 matches to the 8-bp 3′ splice-site consensus. We hypothesized that U2AF might recognize this octamer and thereby prevent export. This idea is supported by RNA interference experiments in which reduced levels of U2AF resulted in a small burst of gfp expression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The peroxisome biogenesis disorders (PBDs), including Zellweger syndrome (ZS) and neonatal adrenoleukodystrophy (NALD), are autosomal recessive diseases caused by defects in peroxisome assembly, for which at least 10 complementation groups have been reported. We have isolated a human PEX1 cDNA (HsPEX1) by functional complementation of peroxisome deficiency of a mutant Chinese hamster ovary (CHO) cell line, ZP107, transformed with peroxisome targeting signal type 1-tagged “enhanced” green fluorescent protein. This cDNA encodes a hydrophilic protein (Pex1p) comprising 1,283 amino acids, with high homology to the AAA-type ATPase family. A stable transformant of ZP107 with HsPEX1 was morphologically and biochemically restored for peroxisome biogenesis. HsPEX1 expression restored peroxisomal protein import in fibroblasts from three patients with ZS and NALD of complementation group I (CG-I), which is the highest-incidence PBD. A CG-I ZS patient (PBDE-04) possessed compound heterozygous, inactivating mutations: a missense point mutation resulting in Leu-664 → Pro and a deletion of the sequence from Gly-634 to His-690 presumably caused by missplicing (splice site mutation). Both PBDE-04 PEX1 cDNAs were defective in peroxisome-restoring activity when expressed in the patient fibroblasts as well as in ZP107 cells. These results demonstrate that PEX1 is the causative gene for CG-I peroxisomal disorders.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fractionation of the abundant small ribonucleoproteins (RNPs) of the trypanosomatid Leptomonas collosoma revealed the existence of a group of unidentified small RNPs that were shown to fractionate differently than the well-characterized trans-spliceosomal RNPs. One of these RNAs, an 80-nt RNA, did not possess a trimethylguanosine (TMG) cap structure but did possess a 5′ phosphate terminus and an invariant consensus U5 snRNA loop 1. The gene coding for the RNA was cloned, and the coding region showed 55% sequence identity to the recently described U5 homologue of Trypanosoma brucei [Dungan, J. D., Watkins, K. P. & Agabian, N. (1996) EMBO J. 15, 4016–4029]. The L. collosoma U5 homologue exists in multiple forms of RNP complexes, a 10S monoparticle, and two subgroups of 18S particles that either contain or lack the U4 and U6 small nuclear RNAs, suggesting the existence of a U4/U6⋅U5 tri-small nuclear RNP complex. In contrast to T. brucei U5 RNA (62 nt), the L. collosoma homologue is longer (80 nt) and possesses a second stem–loop. Like the trypanosome U3, U6, and 7SL RNA genes, a tRNA gene coding for tRNACys was found 98 nt upstream to the U5 gene. A potential for base pair interaction between U5 and SL RNA in the 5′ splice site region (positions −1 and +1) and downstream from it is proposed. The presence of a U5-like RNA in trypanosomes suggests that the most essential small nuclear RNPs are ubiquitous for both cis- and trans-splicing, yet even among the trypanosomatids the U5 RNA is highly divergent.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Podospora anserina is a filamentous fungus with a limited life span. Life span is controlled by nuclear and extranuclear genetic traits. Herein we report the nature of four alterations in the nuclear gene grisea that lead to an altered morphology, a defect in the formation of female gametangia, and an increased life span. Three sequence changes are located in the 5′ upstream region of the grisea ORF. One mutation is a G → A transition at the 5′ splice site of the single intron of the gene, leading to a RNA splicing defect. This loss-of-function affects the amplification of the first intron of the mitochondrial cytochrome c oxidase subunit I gene (COI) and the specific mitochondrial DNA rearrangements that occur during senescence of wild-type strains. Our results indicate that the nuclear gene grisea is part of a molecular machinery involved in the control of mitochondrial DNA reorganizations. These DNA instabilities accelerate but are not a prerequisite for the aging of P. anserina cultures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It has been assumed that constitutive and regulated splicing of RNA polymerase II transcripts depends exclusively on signals present in the RNA molecule. Here we show that changes in promoter structure strongly affect splice site selection. We investigated the splicing of the ED I exon, which encodes a facultative type III repeat of fibronectin, whose inclusion is regulated during development and in proliferative processes. We used an alternative splicing assay combined with promoter swapping to demonstrate that the extent of ED I splicing is dependent on the promoter structure from which the transcript originated and that this regulation is independent of the promoter strength. Thus, these results provide the first evidence for coupling between alternative splicing and promoter-specific transcription, which agrees with recent cytological and biochemical evidence of coordination between splicing and transcription.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pallido-ponto-nigral degeneration (PPND) is one of the most well characterized familial neurodegenerative disorders linked to chromosome 17q21–22. These hereditary disorders are known collectively as frontotemporal dementia (FTD) and parkinsonism linked to chromosome 17 (FTDP-17). Although the clinical features and associated regional variations in the neuronal loss observed in different FTDP-17 kindreds are diverse, the diagnostic lesions of FTDP-17 brains are tau-rich filaments in the cytoplasm of specific subpopulations of neurons and glial cells. The microtubule associated protein (tau) gene is located on chromosome 17q21–22. For these reasons, we investigated the possibility that PPND and other FTDP-17 syndromes might be caused by mutations in the tau gene. Two missense mutations in exon 10 of the tau gene that segregate with disease, Asn279Lys in the PPND kindred and Pro301Leu in four other FTDP-17 kindreds, were found. A third mutation was found in the intron adjacent to the 3′ splice site of exon 10 in patients from another FTDP-17 family. Transcripts that contain exon 10 encode tau isoforms with four microtubule (MT)-binding repeats (4Rtau) as opposed to tau isoforms with three MT-binding repeats (3Rtau). The insoluble tau aggregates isolated from brains of patients with each mutation were analyzed by immunoblotting using tau-specific antibodies. For each of three mutations, abnormal tau with an apparent Mr of 64 and 69 was observed. The dephosphorylated material comigrated with tau isoforms containing exon 10 having four MT-binding repeats but not with 3Rtau. Thus, the brains of patients with both the missense mutations and the splice junction mutation contain aggregates of insoluble 4Rtau in filamentous inclusions, which may lead to neurodegeneration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With only two different cell types, the haploid green alga Volvox represents the simplest multicellular model system. To facilitate genetic investigations in this organism, the occurrence of homologous recombination events was investigated with the intent of developing methods for gene replacement and gene disruption. First, homologous recombination between two plasmids was demonstrated by using overlapping nonfunctional fragments of a recombinant arylsulfatase gene (tubulin promoter/arylsulfatase gene). After bombardment of Volvox reproductive cells with DNA-coated gold microprojectiles, transformants expressing arylsulfatase constitutively were recovered, indicating the presence of the machinery for homologous recombination in Volvox. Second, a well characterized loss-of-function mutation in the nuclear nitrate reductase gene (nitA) with a single G → A nucleotide exchange in a 5′-splice site was chosen as a target for gene replacement. Gene replacement by homologous recombination was observed with a reasonably high frequency only if the replacement vector containing parts of the functional nitrate reductase gene contained only a few nucleotide exchanges. The ratio of homologous to random integration events ranged between 1:10 and 1:50, i.e., homologous recombination occurs frequently enough in Volvox to apply the powerful tool of gene disruption for functional studies of novel genes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The bovine papillomavirus type 1 (BPV-1) exonic splicing suppressor (ESS) is juxtaposed immediately downstream of BPV-1 splicing enhancer 1 and negatively modulates selection of a suboptimal 3′ splice site at nucleotide 3225. The present study demonstrates that this pyrimidine-rich ESS inhibits utilization of upstream 3′ splice sites by blocking early steps in spliceosome assembly. Analysis of the proteins that bind to the ESS showed that the U-rich 5′ region binds U2AF65 and polypyrimidine tract binding protein, the C-rich central part binds 35- and 54–55-kDa serine/arginine-rich (SR) proteins, and the AG-rich 3′ end binds alternative splicing factor/splicing factor 2. Mutational and functional studies indicated that the most critical region of the ESS maps to the central C-rich core (GGCUCCCCC). This core sequence, along with additional nonspecific downstream nucleotides, is sufficient for partial suppression of spliceosome assembly and splicing of BPV-1 pre-mRNAs. The inhibition of splicing by the ESS can be partially relieved by excess purified HeLa SR proteins, suggesting that the ESS suppresses pre-mRNA splicing by interfering with normal bridging and recruitment activities of SR proteins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multiple copies of the hexamer TGCATG have been shown to regulate fibronectin pre-mRNA alternative splicing. GCATG repeats also are clustered near the regulated calcitonin-specific 3′ splice site in the rat calcitonin/CGRP gene. Specific mutagenesis of these repeats in calcitonin/CGRP pre-mRNA resulted in the loss of calcitonin-specific splicing, suggesting that the native repeats act to enhance alternative exon inclusion. Mutation of subsets of these elements implies that alternative splicing requires a minimum of two repeats, and that the combination of one intronic and one exonic repeat is necessary for optimal cell-specific splicing. However, multimerized intronic repeats inhibited calcitonin-specific splicing in both the wild-type context and in a transcript lacking endogenous repeats. These results suggest that both the number and distribution of repeats may be important features for the regulation of tissue-specific alternative splicing. Further, RNA containing a single repeat bound cell-specific protein complexes, but tissue-specific differences in protein binding were not detected by using multimerized repeats. Together, these data support a novel model for alternative splicing regulation that requires the cell-specific recognition of multiple, distributed sequence elements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Skipping of internal exons during removal of introns from pre-mRNA must be avoided for proper expression of most eukaryotic genes. Despite significant understanding of the mechanics of intron removal, mechanisms that ensure inclusion of internal exons in multi-intron pre-mRNAs remain mysterious. Using a natural two-intron yeast gene, we have identified distinct RNA–RNA complementarities within each intron that prevent exon skipping and ensure inclusion of internal exons. We show that these complementarities are positioned to act as intron identity elements, bringing together only the appropriate 5′ splice sites and branchpoints. Destroying either intron self-complementarity allows exon skipping to occur, and restoring the complementarity using compensatory mutations rescues exon inclusion, indicating that the elements act through formation of RNA secondary structure. Introducing new pairing potential between regions near the 5′ splice site of intron 1 and the branchpoint of intron 2 dramatically enhances exon skipping. Similar elements identified in single intron yeast genes contribute to splicing efficiency. Our results illustrate how intron secondary structure serves to coordinate splice site pairing and enforce exon inclusion. We suggest that similar elements in vertebrate genes could assist in the splicing of very large introns and in the evolution of alternative splicing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The efficient expression of therapeutic genes in target cells or tissues is an important component of efficient and safe gene therapy. Utilizing regulatory elements from the human cytokeratin 18 (K18) gene, including 5′ genomic sequences and one of its introns, we have developed a novel expression cassette that can efficiently express reporter genes, as well as the human cystic fibrosis transmembrane conductance regulator (CFTR) gene, in cultured lung epithelial cells. CFTR transcripts expressed from the native K18 enhancer/promoter include two alternative splicing products, due to the activation of two cryptic splice sites in the CFTR coding region. Modification of the K18 intron and CFTR cDNA sequences eliminated the cryptic splice sites without changing the CFTR amino acid sequence, and led to enhanced CFTR mRNA and protein expression as well as biological function. Transgenic expression analysis in mice showed that the modified expression cassette can direct efficient and epithelium-specific expression of the Escherichia coli LacZ gene in the airways of fetal lungs, with no detectable expression in lung fibroblasts or endothelial cells. This is the first expression cassette which selectively directs lung transgene expression for CFTR gene therapy to airway epithelia.