983 resultados para crop producers
Resumo:
Biological aspects of Leucothyreus alvarengai Frey and Leucothyreus aff. semipruinosus Ohaus (Coleoptera, Melolonthidae, Rutelinae) in crop succession at central Brazil. Beetles of the family Melolonthidae make up a large group and some species are considered pests of planted crops. Little information is available on the basic biological aspects of the genus Leucothyreus, such as association with cultivated crops and their occurrence periods. Therefore studies were developed in soybean and corn crops in Tangará da Serra, Mato Grosso, Brazil, with the objective of studying the occurrence and biological aspects of Leucothyreus alvarengai Frey and Leucothyreus aff. semipruinosus Ohaus. For acquisition of immature specimens of both species, in April 2011 sampling was performed in corn fields, in July and October in the fallow area, and in soybeans fields planted in December; in 2012 sampling was performed in January and February in soybean fields and in March in corn fields. In 2011 the total number of larvae obtained in April, July, October and December were 100, 6, 30 and 27, and in January, February and March of 2012 these quantities were 32, 52 and 65 larvae, respectively. In all sampling events the larvae of L. alvarengai were collected in greater quantity. At the beginning of the reproductive period of L. alvarengai and L. aff. semipruinosus, it was observed that the adults began to fly and soon after started oviposition in the field in September. The appearance of larvae coincides with the time of soybean planting in the field, thus the larvae feed on roots of soybean plants at the beginning of their development and the cycle from egg to adult of the two species was completed in one year.
Resumo:
Report produced by the The Department of Agriculture and Land Stewardship, Climatology Bureau. Iowa Secretary of Agriculture Bill Northey today commented on the Iowa Crops and Weather report released by the USDA National Agricultural Statistical Service. The report is released weekly from April through October.
Resumo:
During the 2005 Legislative Session the Iowa Department of Revenue received an appropriation to establish the Tax Credits Tracking and Analysis Program (TCTAP) to track tax credit awards and claims. In addition, the Department was directed to perform periodic evaluations of tax credit programs. The purpose of these studies is three-fold: (1) To provide a comparison of the Iowa tax credit program to similar federal and other states’ programs (2) To summarize information related to the usage of the Iowa tax credit (3) To evaluate the economic impact of the tax credit program.
Resumo:
Introduction. Agricultural workers are among the professional groups most at risk of developing acute or chronic respiratory problems. Despite this fact, the etiology of these occupational diseases is poorly known, even in important sectors of agriculture such as the crops sector. Cereals can be colonized by a large number of fungal species throughout the plants' growth, but also during grain storage. Some of these fungi deliver toxins that can have a serious impact on human health when they are ingested via wheat products. Although International and European legislation on contaminants in food, including mycotoxins, include measures to ensure protection of public health by setting down the maximum levels for certain contaminants, the risks associated with the inhalation of such molecules during grain handling remains poorly documented. Goal of study. This project's objective was to characterize worker exposure to pathogenic, irritative or allergenic microorganisms and to identify the abiotic or biotic factors that reduce the growth of these microorganisms in crops. Indeed, the proliferation of microorganisms on wheat is dependent on temperature, rainfall and human disturbance (e.g. usage of tillage, addition of fungicides). A change in the concentration of these microorganisms in the substrate will directly result in a change in the concentration of aerosolized particles of the same microorganisms. Therefore, the exposure of worker to bioaérosols will also change. The Vaud region of Switzerland is a perfect region for conduct such a project as weather conditions vary and agricultural land management programs are divers at a small geographic scale. Methods. Bioaerosols and wheat dust have been sampled during wheat harvesting of summer 2010 at 100 sites uniformly distributed in the Vaud region that are representative of the different agriculture practices. Personal exposure has been evaluated for different wheat related activities: harvesting, grain unload, baling straw, the cleaning of harvesters and silos. Aerosols have been sampled at a rate of 2L/min between 15 min to 4 hours (t) on a 5m PVC filter for estimating the total dust inhaled, on gelatine filter for the identification and quantification of molds, and on a 0.45um polycarbonate filter for endotoxin quantification. Altitude, temperature and annual average rainfall were considered for each site. The physical and chemical characteristics of soils were determined using the methods in effect at Sol Council (Nyon). Total dust has been quantified following NIOSH 0500 method. Reactive endotoxine activity has been determined with Limulus Amebocyte Lysate Assay. All molds have been identified by the pyrosequencing of ITS2 amplicons generated from bioaerosol or wheat dust genomic DNA. Results & Conclusions. Our results confirm the previous quantitative data on the worker exposure to wheat dust. In addition, they show that crop workers are systematically exposed to complex mixtures of allergens, irritants or cytotoxic components. The novelty of our study is the systematic detection of molds such as Fusarium - that is a mycotoxins producer - in the bioaerosols. The results are interpreted by taking in account the agriculture practice, the Phosphorus : Carbon : Nitrogen ratio of the soil, the altitude and the average of rainy days per year.
Resumo:
The protective effect of cations, especially Ca and Mg, against aluminum (Al) rhizotoxicity has been extensively investigated in the last decades. The mechanisms by which the process occurs are however only beginning to be elucidated. Six experiments were carried out here to characterize the protective effect of Mg application in relation to timing, location and crop specificity: Experiment 1 - Protective effect of Mg compared to Ca; Experiment 2 - Protective effect of Mg on distinct root classes of 15 soybean genotypes; Experiment 3 - Effect of timing of Mg supply on the response of soybean cvs. to Al; Experiment 4 - Investigating whether the Mg protective effect is apoplastic or simplastic using a split-root system; Experiment 5 - Protective effect of Mg supplied in solution or foliar spraying, and Experiment 6 - Protective effect of Mg on Al rhizotoxicity in other crops. It was found that the addition of 50 mmol L-1 Mg to solutions containing toxic Al increased Al tolerance in 15 soybean cultivars. This caused soybean cultivars known as Al-sensitive to behave as if they were tolerant. The protective action of Mg seems to require constant Mg supply in the external medium. Supplying Mg up to 6 h after root exposition to Al was sufficient to maintain normal soybean root growth, but root growth was not recovered by Mg addition 12 h after Al treatments. Mg application to half of the root system not exposed to Al was not sufficient to prevent Al toxicity on the other half exposed to Al without Mg in rooting medium, indicating the existence of an external protection mechanism of Mg. Foliar spraying with Mg also failed to decrease Al toxicity, indicating a possible apoplastic role of Mg. The protective effect of Mg appeared to be soybean-specific since Mg supply did not substantially improve root elongation in sorghum, wheat, corn, cotton, rice, or snap bean when grown in the presence of toxic Al concentrations.
Resumo:
Decomposing crop residues in no-tillage system can alter soil chemical properties, which may consequently influence the productivity of succession crops. The objective of this study was to evaluate soil chemical properties and soybean, maize and rice yield, grown in the summer, after winter crops in a no-tillage system. The experiment was carried out in Jaboticabal, SP, Brazil (21 ° 15 ' 22 '' S; 48 ° 18 ' 58 '' W) on a Red Latosol (Oxisol), in a completely randomized block design, in strip plots with three replications. The treatments consisted of four summer crop sequences (maize monocrop, soybean monocrop, soybean/maize rotation and rice/bean/cotton rotation) combined with seven winter crops (maize, sunflower, oilseed radish, pearl millet, pigeon pea, grain sorghum and sunn hemp). The experiment began in September 2002. After the winter crops in the 2005/2006 growing season and before the sowing of summer crops in the 2006/2007 season, soil samples were collected in the layers 0-2.5; 2.5-5.0; 5-10; 10-20; and 20-30 cm. Organic matter, pH, P, K+, Ca2+, Mg2+, and H + Al were determined in each soil sample. In the summer soybean/maize rotation and in maize the organic matter contents and P levels were lower, in the layers 0-10 cm and 0-20 cm, respectively. Summer rice/bean/cotton rotation increased soil K levels at 0-10 cm depth when sunn hemp and oilseed radish had previously been grown in the winter, and in the 0-2.5 cm layer for millet. Sunn hemp, millet, oilseed radish and sorghum grown in the winter increased organic matter contents in the soil down to 30 cm. Higher P levels were found at the depths 0-2.5 cm and 0-5 cm, respectively, when sunn hemp and oilseed radish were grown in the winter. Highest grain yields for soybean in monoculture were obtained in succession to winter oilseed radish and sunn hemp and in rotation with maize, after oilseed radish, sunn hemp and millet. Maize yields were highest in succession to winter oilseed radish, millet and pigeon pea. Rice yields were lowest when grown after sorghum.
Resumo:
Soil properties are closely related with crop production and spite of the measures implemented, spatial variation has been repeatedly observed and described. Identifying and describing spatial variations of soil properties and their effects on crop yield can be a powerful decision-making tool in specific land management systems. The objective of this research was to characterize the spatial and temporal variations in crop yield and chemical and physical properties of a Rhodic Hapludox soil under no-tillage. The studied area of 3.42 ha had been cultivated since 1985 under no-tillage crop rotation in summer and winter. Yield and soil property were sampled in a regular 10 x 10 m grid, with 302 sample points. Yields of several crops were analyzed (soybean, maize, triticale, hyacinth bean and castor bean) as well as soil chemical (pH, Soil Organic Matter (SOM), P, Ca2+, Mg2+, H + Al, B, Fe, Mn, Zn, CEC, sum of bases (SB), and base saturation (V %)) and soil physical properties (saturated hydraulic conductivity, texture, density, total porosity, and mechanical penetration resistance). Data were analyzed using geostatistical analysis procedures and maps based on interpolation by kriging. Great variation in crop yields was observed in the years evaluated. The yield values in the Northern region of the study area were high in some years. Crop yields and some physical and soil chemical properties were spatially correlated.
Resumo:
Nitrous oxide (N2O) is the most important non-CO2 greenhouse gas and soil management systems should be evaluated for their N2O mitigation potential. This research evaluated a long-term (22 years) experiment testing the effect of soil management systems on N2O emissions in the postharvest period (autumn) from a subtropical Rhodic Hapludox at the research center FUNDACEP, in Cruz Alta, state of Rio Grande do Sul. Three treatments were evaluated, one under conventional tillage with soybean residues (CTsoybean) and two under no-tillage with soybean (NTsoybean) and maize residues (NTmaize). N2O emissions were measured eight times within 24 days (May 2007) using closed static chambers. Gas flows were obtained based on the relations between gas concentrations in the chamber at regular intervals (0, 15, 30, 45 min) analyzed by gas chromatography. After soybean harvest, accumulated N2O emissions in the period were approximately three times higher in the untilled soil (164 mg m-2 N) than under CT (51 mg m-2 N), with a short-lived N2O peak of 670 mg m-2 h-1 N. In contrast, soil N2O emissions in NT were lower after maize than after soybean, with a N2O peak of 127 g m-2 h-1 N. The multivariate analysis of N2O fluxes and soil variables, which were determined simultaneously with air sampling, demonstrated that the main driving variables of soil N2O emissions were soil microbial activity, temperature, water-filled pore space, and NO3- content. To replace soybean monoculture, crop rotation including maize must be considered as a strategy to decrease soil N2O emissions from NT soils in Southern Brazil in a Autumn.
Resumo:
Soil physical quality is essential to global sustainability of agroecosystems, once it is related to processes that are essential to agricultural crop development. This study aimed to evaluate physical attributes of a Yellow Latossol under different management systems in the savanna area in the state of Piaui. This study was developed in Uruçuí southwest of the state of Piauí. Three systems of soil management were studied: an area under conventional tillage (CT) with disk plowi and heavy harrow and soybean crop; an area under no-tillage with soybean-maize rotation and millet as cover crop (NT + M); two areas under Integrated Crop-Livestock System, with five-month pasture grazing and soybean cultivation and then continuous pasture grazing (ICL + S and ICL + P, respectively). Also, an area under Native Forest (NF) was studied. The soil depths studied were 0.00-0.05, 0.05-0.10 and 0.10-0.20 m. Soil bulk density, as well as porosity and stability of soil aggregates were analyzed as physical attributes. Anthropic action has changed the soil physical attributes, in depth, in most systems studied, in comparison to NF. In the 0.00 to 0.05 m depth, ICL + P showed higher soil bulk density value. As to macroporosity, there was no difference between the management systems studied and NF. The management systems studied changed the soil structure, having, as a result, a small proportion of soil in great aggregate classes (MWD). Converting native forest into agricultural production systems changes the soil physical quality. The Integrated Crop-Livestock System did not promote the improvement in soil physical quality.
Resumo:
Selostus: Kasvintuotannon ilmasto-olosuhteet Pohjoismaissa
Resumo:
Grazing intensities can influence soil aggregation, which can be temporarily and permanently affected. The objective of this study was to evaluate the aggregate stability in water at the end of a soybean cycle and during pasture development in a crop-livestock integration system under no-tillage and grazing intensities. The experiment was initiated in 2001, in a dystrophic Red Latosol, after soybean harvest. Treatments consisted of pasture (black oat + Italian ryegrass) at heights of 10, 20 and 40 cm, grazed by young cattle, and a control (no grazing), followed by soybean cultivation, in a randomized block design. Soil samples were collected at the end of the soybean cycle (May/2007), during animal grazing (September/2007) and at the end of the grazing cycle (November/2007). The grazing period influences aggregate distribution, since in the September sampling (0-5 cm layer), there was a higher proportion of aggregates > 4.76 mm at all grazing intensities. Soil aggregation is higher in no-tillage crop-livestock integration systems in grazed than in ungrazed areas.
Resumo:
Systematic pig slurry application to crop soils may lead to the accumulation of heavy metals in regions with intensive pig raising. The aim of this study was to evaluate the accumulation of Cu, Zn and Mn in soils under systematic pig slurry application. For this purpose, soil samples were collected from two of the most representative watersheds of Santa Catarina where the predominant activity is pig raising. In each watershed, 12 properties were chosen to evaluate the different systems of pig husbandry (complete cycle (CC), farrowing (FaU) and finishing units (FiU)). Based on information of the producers, soil samples were collected in areas with and without systematic manure application. To determine the total Cu, Zn and Mn content in soils and manure, a methodology proposed by the Environmental Protection Agency of the United States (USEPA), method nº 3050B, was used. For the available heavy metal content, Cu and Zn was extracted with HCl 0.1 mol L-1 and Mn with KCl 1 mol L-1. Data were subjected to multivariate analysis, using the canonical discriminant analysis to identify the metals that best differentiate the soils studied within each swine housing system. Successive pig slurry applications cause an increase in Cu, Zn and Mn availability in the soil and this indicates the need for monitoring of the metal concentrations over time. The critical values of Cu in the soil can be reached and exceeded more rapidly than Zn. The results showed that the soil type may be one of the attribute underlying the determination of public policies in pig raising and waste management because soils such as Inceptisols were shown to be more prone to possible contamination since they may more rapidly reach total critical Cu levels.
Resumo:
The structural stability and restructuring ability of a soil are related to the methods of crop management and soil preparation. A recommended strategy to reduce the effects of soil preparation is to use crop rotation and cover crops that help conserve and restore the soil structure. The aim of this study was to evaluate and quantify the homogeneous morphological units in soil under conventional mechanized tillage and animal traction, as well as to assess the effect on the soil structure of intercropping with jack bean (Canavalia ensiformis L.). Profiles were analyzed in April of 2006, in five counties in the Southern-Central region of Paraná State (Brazil), on family farms producing maize (Zea mays L.), sometimes intercropped with jack bean. The current structures in the crop profile were analyzed using Geographic Information Systems (GIS) and subsequently principal component analysis (PCA) to generate statistics. Morphostructural soil analysis showed a predominance of compact units in areas of high-intensity cultivation under mechanized traction. The cover crop did not improve the structure of the soil with low porosity and compact units that hamper the root system growth. In areas exposed to animal traction, a predominance of cracked units was observed, where roots grew around the clods and along the gaps between them.
Resumo:
The aim of this study was a survey of the estimated costs of soil erosion, an issue of fundamental importance in view of the current worldwide discussions on sustainability. A list was drawn up of research papers on erosion (on-site and off-site effects) and their respective costs. The estimates indicate the amount of resources spent in the process of soil degradation, raising a general awareness of the need for soil conservation. On-site costs affect the production units directly, while off-site costs create a burden borne by the environment, economy and society. In addition, estimating the costs of soil erosion should be effective to alert the agricultural producers, society and government for the need for measures that can be implemented to bring erosion under control. Among the various estimates of soil erosion costs between 1933 a 2010, the highest figure was 45.5 billion dollars a year for the European Union. In the United States, the highest figure was 44 billion dollars a year. In Brazil, estimates for the state of Paraná indicate a value of 242 million dollars a year, and for the state of São Paulo, 212 million dollars a year. These figures show, above all, that conservation measures must be implemented if crop and livestock farming production are to be sustainable.
Resumo:
Winter cover crops are sources of C and N in flooded rice production systems, but very little is known about the effect of crop residue management and quality on soil methane (CH4) and nitrous oxide (N2O) emissions. This study was conducted in pots in a greenhouse to evaluate the influence of crop residue management (incorporated into the soil or left on the soil surface) and the type of cover-crop residues (ryegrass and serradella) on CH4 and N2O emissions from a flooded Albaqualf soil cultivated with rice (Oryza sativa L.). The closed chamber technique was used for air sampling and the CH4 and N2O concentrations were analyzed by gas chromatography. Soil solution was sampled at two soil depths (2 and 20 cm), simultaneously to air sampling, and the contents of dissolved organic C (DOC), NO3-, NH4+, Mn2+, and Fe2+ were analyzed. Methane and N2O emissions from the soil where crop residues had been left on the surface were lower than from soil with incorporated residues. The type of crop residue had no effect on the CH4 emissions, while higher N2O emissions were observed from serradella (leguminous) than from ryegrass, but only when the residues were left on the soil surface. The more intense soil reduction verified in the deeper soil layer (20 cm), as evidenced by higher contents of reduced metal species (Mn2+ and Fe2+), and the close relationship between CH4 emission and the DOC contents in the deeper layer indicated that the sub-surface layer was the main CH4 source of the flooded soil with incorporated crop residues. The adoption of management strategies in which crop residues are left on the soil surface is crucial to minimize soil CH4 and N2O emissions from irrigated rice fields. In these production systems, CH4 accounts for more than 90 % of the partial global warming potential (CH4+N2O) and, thus, should be the main focus of research.