979 resultados para critical swimming speed


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theoretical models are developed for the continuous-wave and pulsed laser incision and cut of thin single and multi-layer films. A one-dimensional steady-state model establishes the theoretical foundations of the problem by combining a power-balance integral with heat flow in the direction of laser motion. In this approach, classical modelling methods for laser processing are extended by introducing multi-layer optical absorption and thermal properties. The calculation domain is consequently divided in correspondence with the progressive removal of individual layers. A second, time-domain numerical model for the short-pulse laser ablation of metals accounts for changes in optical and thermal properties during a single laser pulse. With sufficient fluence, the target surface is heated towards its critical temperature and homogeneous boiling or "phase explosion" takes place. Improvements are seen over previous works with the more accurate calculation of optical absorption and shielding of the incident beam by the ablation products. A third, general time-domain numerical laser processing model combines ablation depth and energy absorption data from the short-pulse model with two-dimensional heat flow in an arbitrary multi-layer structure. Layer removal is the result of both progressive short-pulse ablation and classical vaporisation due to long-term heating of the sample. At low velocity, pulsed laser exposure of multi-layer films comprising aluminium-plastic and aluminium-paper are found to be characterised by short-pulse ablation of the metallic layer and vaporisation or degradation of the others due to thermal conduction from the former. At high velocity, all layers of the two films are ultimately removed by vaporisation or degradation as the average beam power is increased to achieve a complete cut. The transition velocity between the two characteristic removal types is shown to be a function of the pulse repetition rate. An experimental investigation validates the simulation results and provides new laser processing data for some typical packaging materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: New equipment and techniques in winter sports, such as carving skis and snowboards, have brought up new trauma patterns into the spectrum of leisure trauma. The injuries resemble high-energy trauma known from road crashes. The aim of the present study was to assess the incidence of acute traumatic descending aortic rupture in recreational skiing-crashes. MATERIAL: Between January 1995 and December 2004, 22 patients were admitted to our hospital for aortic rupture. Four patients had skiing crashes (18.2%). Mean age was 31 years, all patients were male. In two cases, aortic rupture was associated with fractures of the upper and lower extremities. One patient additionally had a cerebral contusion with an initial Glasgow Coma Scale score of 13. In two patients, isolated aortic rupture was diagnosed. RESULTS: Two patients were treated by graft interposition, and one by endograft. One patient arrived under mechanical resuscitation without blood pressure. He died at admission. He had been observed for 5 hours in another hospital, complaining of severe intrascapular back pain, before transport to our trauma unit for unknown bleeding. In the other three cases, treatment was successful. CONCLUSION: Rescue services and paramedics should be aware of this new type of injury. Acute aortic rupture has to be considered as possible injury in high velocity skiing crashes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While nucleation of solids in supercooled liquids is ubiquitous [15, 65, 66], surface crystallization, the tendency for freezing to begin preferentially at the liquid-gas interface, has remained puzzling [74, 18, 68, 69, 51, 64, 72, 16]. Here we employ high-speed imaging of supercooled water drops to study the phenomenon of heterogeneous surface crystallization. Our geometry avoids the "point-like contact" of prior experiments by providing a simple, symmetric contact line (triple line defined by the substrate-liquid-air interface) for a drop resting on a homogeneous silicon substrate. We examine three possible mechanisms that might explain these laboratory observations: (i) Line Tension at the triple line, (ii) Thermal Gradients within the droplets and (iii) Surface Texture. In our first study we record nearly perfect spatial uniformity in the immersed (liquid-substrate) region and, thereby, no preference for nucleation at the triple line. In our second study, no influence of thermal gradients on the preference for freezing at the triple line was observed. Motivated by the conjectured importance of line tension (τ) [1, 66] for heterogeneous nucleation, we also searched for evidence of a transition to surface crystallization at length scales on the order of δ ∼ τ/σ, where σ is the surface tension [14]; poorly constrained τ [49] leads to δ ranging from microns to nanometers. We demonstrate that nano-scale texture causes a shift in the nucleation to the three-phase contact line, while micro-scale texture does not. The possibility of a critical length scale has implications for the effectiveness of nucleation catalysts, including formation of ice in atmospheric clouds [7].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Broadcast spawning marine invertebrates are susceptible to environmental stressors such as climate change, as their reproduction depends on the successful meeting and fertilization of gametes in the water column. Under near-future scenarios of ocean acidification, the swimming behaviour of marine invertebrate sperm is altered. We tested whether this was due to changes in sperm mitochondrial activity by investigating the effects of ocean acidification on sperm metabolism and swimming behaviour in the sea urchin Centrostephanus rodgersii. We used a fluorescent molecular probe (JC-1) and flow cytometry to visualize mitochondrial activity (measured as change in mitochondrial membrane potential, MMP). Sperm MMP was significantly reduced in delta pH -0.3 (35% reduction) and delta pH -0.5 (48% reduction) treatments, whereas sperm swimming behaviour was less sensitive with only slight changes (up to 11% decrease) observed overall. There was significant inter-individual variability in responses of sperm swimming behaviour and MMP to acidified seawater. We suggest it is likely that sperm exposed to these changes in pH are close to their tipping point in terms of physiological tolerance to acidity. Importantly, substantial inter-individual variation in responses of sperm swimming to ocean acidification may increase the scope for selection of resilient phenotypes, which, if heritable, could provide a basis for adaptation to future ocean acidification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anthropogenic carbon dioxide emissions induce ocean acidification, thereby reducing carbonate ion concentration, which may affect the ability of calcifying organisms to build shells. Pteropods, the main planktonic producers of aragonite in the worlds' oceans, may be particularly vulnerable to changes in sea water chemistry. The negative effects are expected to be most severe at high-latitudes, where natural carbonate ion concentrations are low. In this study we investigated the combined effects of ocean acidification and freshening on Limacina retroversa, the dominant pteropod in sub polar areas. Living L. retroversa, collected in Northern Norwegian Sea, were exposed to four different pH values ranging from the pre-industrial level to the forecasted end of century ocean acidification scenario. Since over the past half-century the Norwegian Sea has experienced a progressive freshening with time, each pH level was combined with a salinity gradient in two factorial, randomized experiments investigating shell degradation, swimming behavior and survival. In addition, to investigate shell degradation without any physiologic influence, one perturbation experiments using only shells of dead pteropods was performed. Lower pH reduced shell mass whereas shell dissolution increased with pCO2. Interestingly, shells of dead organisms had a higher degree of dissolution than shells of living individuals. Mortality of Limacina retroversa was strongly affected only when both pH and salinity reduced simultaneously. The combined effects of lower salinity and lower pH also affected negatively the ability of pteropods to swim upwards. Results suggest that the energy cost of maintaining ion balance and avoiding sinking (in low salinity scenario) combined with the extra energy cost necessary to counteract shell dissolution (in high pCO2 scenario), exceed the available energy budget of this organism causing the pteropods to change swimming behavior and begin to collapse. Since L. retroversa play an important role in the transport of carbonates to the deep oceans these findings have significant implications for the mechanisms influencing the inorganic carbon cycle in the sub-polar area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Railway bridges have specific requirements related to safety, which often are critical aspects of design. In this paper the main phenomena are reviewed, namely vertical dynamic effects for impact effect of moving loads and resonance in high-speed, service limit states which affect the safety of running traffic, and lateral dynamic effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the phenomena that limit the velocity of trains in high speed lines is the so- called “ballast pick-up”. It is a ballast train-induced-wind erosion (or BATIWE) that can produce damage to the train under body and the infrastructure surrounding the tracks. The analysis of the measurements taken during several passes of the train allows for a criterion of ballast flight initiation to be obtained. The first rotation of a ballast stone occurs when the impulse given to the stone (arising from the aerodynamic loading produced by the wind gust genera ted by the passing train) overpasses a critical impulse. This impulse depends on the physical properties of the stone (mass, shape, moment of inertia, etc. ...) and its posture on the track bed. The aim of this paper is to report on the experimental results obtained in the ADIF’S Brihuega (Guadalajara) test station, in the Madrid to Barcelona high speed line, and the way they can be used to support the feasibility of the definition of a criterion to evaluate the BA TIWE capability of trains. The results obtained show the feasibility of the proposed method, and contribute to a method of BATIWE characterization, which can be relevant for the development of train interoperability standardization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The commercial centre VIALIA and the new railway station of the AVE (high speed train) in Malaga was inaugurated in November 2006, just on the place of the former railway station. The new railway station with an investment of 134,7 million Euros occupies a surface of 51.377 m2, five times the surface of the former station. The enclosure is the biggest intermodal and commercial centre of Spain which comprises a parking of 21.000 m2 for 1300 parking places, one commercial area and a hotel with a total extension constructed of approximately 100.000 m2. The spaces of leisure contain cinemas, shops, restaurants, bowling, gymnasium, swimming pool and zones of passenger's traffic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabajo se centra en el estudio de problemas aeroacústicos en los trenes de alta velocidad. Se han considerado dos escenarios en los que las ondas de presión generadas son críticos para el confort de los pasajeros. Uno es el debido a las ondas de presión que genera el tren cuando entra y sale de un túnel, que a su vez producen saltos de presión de baja frecuencia en el tren (cuando se cruzan con él) y en los alrededores del túnel cuando alcanzan la salida. Se estudia este fenómeno, y se propone un sistema aeroelástico basado en el galope transversal para disminuir la energía de estas ondas, y se analiza la energía extraíble de las ondas utilizando cuerpos con diferentes secciones transversales [Sorribes-Palmer and Sanz-Andres, 2013]. La influencia de la geometría de los portales en la energía radiada hacia el exterior de túnel es analizada experimentalmente, prestando especial atención a las boquillas porosas. Las ondas de presión en el interior del túnel se han analizado mediante el método de las características. Se han realizado ensayos experimentales para estimar la energía reflejada hacia el interior del túnel al alcanzar las ondas de presión el portal de salida del túnel. Se ha estudiado la formación e interacción entre el portal del túnel y la onda de choque generada en los túneles de gran longitud y pequeña fricción. Se propone un método para describir de forma aproximada el ruido radiado al exterior. Por otro lado se ha estudiado el ruido de media y alta frecuencia de origen aerodinámico. Se ha estudiado la influencia del desprendimiento de la capa límite sobre el tren. Se propone una metodología basada en una sección de tren característica para predecir rápidamente el nivel de presión de sonido dentro y fuera del tren para todo el rango de frecuencias. Se han realizado medidas experimentales en vía de los espectros de presión sobre la superficie del tren, y de la transmisibilidad de las uniones entre estructura y revestimiento. Los resultados experimentales se han utilizado en los modelos vibroacústicos. El método de la sección del tren característica es especialmente útil a altas frecuencias cuando todo el tren se puede modelar mediante el ensamblaje de diferentes secciones características utilizando el análisis estadístico de la energía. ABSTRACT This work is focused on the study of aeroacoustic problems in high speed trains. We have considered two scenarios in which the pressure waves generated are critical for passengers comfort. The first one is due to the pressure waves generated by a train entering in a tunnel. These waves generate pressure gauges inside the train (when they find each other) and outside of the tunnel portals. This phenomenon has been studied, and an aeroelastic system based on transverse galloping to reduce the energy of these waves is proposed. The maximum extractable energy by using bodies with different cross-section shapes is analyzed. The influence of the portals geometry in the energy radiated outwards the tunnel is analyzed experimentally, with particular attention to the porous exits. The pressure waves inside the tunnel have been analyzed using the method of characteristics. Experimental tests to estimate the energy reflected into the tunnel when the pressure waves reach the tunnel portal have been performed. We have studied the generation and interaction between the tunnel portal and a shock wave generated in long tunnels with small friction. A method to describe in an approximated way the pressure radiated outside the tunnel is proposed. In the second scenario, middle and high frequency noise generated aerodynamically has been studied, including the influence of the detachment of the boundary layer around the train. A method based on a train section to quickly predict the sound pressure level inside and outside the train has been proposed. Experimental test have been performed on board to evaluate the pressure power spectra on the surface of the train, and the transmissibility of the junctions between the structure and trim. These experimental results have been used in the vibroacoustic models. The low frequency pressure waves generated with the train during the tunnel crossing has been identified in the pressure spectrum. The train characteristic section method is especially useful at high frequencies, when the whole train can be modeled by assembling different sections using the statistical energy analysis. The sound pressure level inside the train is evaluated inside and outside the tunnel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper aims to set out the influence of the flow field around high speed trains in open field. To achieve this parametric analysis of the sound pressure inside the train was performed. Three vibroacoustic models of a characteristic train section are used to predict the noise inside the train in open field by using finite element method FEM, boundary element method (BEM) and statistical energy analysis (SEA) depending on the frequency range of analysis. The turbulent boundary layer excitation is implemented as the only airborne noise source, in order to focus on the study of the attached and detached flow in the surface of the train. The power spectral densities of the pressure fluctuation in the train surface proposed by [Cockburn and Roberson 1974, Rennison et al. 2009] are applied on the exterior surface of the structural subsystems in the vibroacoustic models. An increase in the sound pressure level up to10 dB can be appreciated due to the detachment of the flow around the train. These results highlight the importance to determine the detached regions prediction, making critical the airborne noise due to turbulent boundary layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Passengers comfort in terms of acoustic noise levels is a key train design parameter, especially relevant in high speed trains, where the aerodynamic noise is dominant. The aim of the work, described in this paper, is to make progress in the understanding of the flow field around high speed trains in an open field, which is a subject of interest for many researchers with direct industrial applications, but also the critical configuration of the train inside a tunnel is studied in order to evaluate the external loads arising from noise sources of the train. The airborne noise coming from the wheels (wheelrail interaction), which is the dominant source at a certain range of frequencies, is also investigated from the numerical and experimental points of view. The numerical prediction of the noise in the interior of the train is a very complex problem, involving many different parameters: complex geometries and materials, different noise sources, complex interactions among those sources, broad range of frequencies where the phenomenon is important, etc. During recent years a research plan is being developed at IDR/UPM (Instituto de Microgravedad Ignacio Da Riva, Universidad Politécnica de Madrid) involving both numerical simulations, wind tunnel and full-scale tests to address this problem. Comparison of numerical simulations with experimental data is a key factor in this process.