926 resultados para crack tip


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new multi-scale model of brittle fracture growth in an Ag plate with macroscopic dimensions is proposed in which the crack propagation is identified with the stochastic drift-diffusion motion of the crack-tip atom through the material. The model couples molecular dynamics simulations, based on many-body interatomic potentials, with the continuum-based theories of fracture mechanics. The Ito stochastic differential equation is used to advance the tip position on a macroscopic scale before each nano-scale simulation is performed. Well-known crack characteristics, such as the roughening transitions of the crack surfaces, as well as the macroscopic crack trajectories are obtained.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a novel approach for introducing aligned carbon nanotubes (CNTs) at the crack interface of pre-impregnated (prepreg) carbon fibre composite plies, creating a hierarchical (three-phase) composite structure. The aim of this approach is to improve the interlaminar fracture toughness. The developed method for transplanting the aligned CNTs from the silicon wafer onto the pre-preg material is described. Scanning electron microscopy (SEM) was used to analyse the effects of the transplantation method. Double Cantilever Beam (DCB) specimens were prepared, according to ASTM standard D5528- 01R07E03 [1] and aligned multi-walled carbon nanotubes (MWCNTs) were introduced at the crack-tip. Mode I fracture tests for pristine (control) specimens and CNT-enhanced specimens were conducted and an average increase in the critical strain energy release rate (GIc) of approximately 50 % was achieved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fatigue life in metals is predicted utilizing regression analysis of large sets of experimental data, thus representing the material’s macroscopic response. Furthermore, a high variability in the short crack growth (SCG) rate has been observed in polycrystalline materials, in which the evolution and distributionof local plasticity is strongly influenced by the microstructure features. The present work serves to (a) identify the relationship between the crack driving force based on the local microstructure in the proximity of the crack-tip and (b) defines the correlation between scatter observed in the SCG rates to variability in the microstructure. A crystal plasticity model based on the fast Fourier transform formulation of the elasto-viscoplastic problem (CP-EVP-FFT) is used, since the ability to account for the both elastic and plastic regime is critical in fatigue. Fatigue is governed by slip irreversibility, resulting in crack growth, which starts to occur during local elasto-plastic transition. To investigate the effects of microstructure variability on the SCG rate, sets of different microstructure realizations are constructed, in which cracks of different length are introduced to mimic quasi-static SCG in engineering alloys. From these results, the behavior of the characteristic variables of different length scale are analyzed: (i) Von Mises stress fields (ii) resolved shear stress/strain in the pertinent slip systems, and (iii) slip accumulation/irreversibilities. Through fatigue indicator parameters (FIP), scatter within the SCG rates is related to variability in the microstructural features; the results demonstrate that this relationship between microstructure variability and uncertainty in fatigue behavior is critical for accurate fatigue life prediction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The polychaete Nereis virens burrows through muddy sediments by exerting dorsoventral forces against the walls of its tongue-depressor- shaped burrow to extend an oblate hemispheroidal crack. Stress is concentrated at the crack tip, which extends when the stress intensity factor (K-I) exceeds the critical stress intensity factor (K-Ic). Relevant forces were measured in gelatin, an analog for elastic muds, by photoelastic stress analysis, and were 0.015 +/- 0.001 N (mean +/- s.d.;N= 5). Measured elastic moduli (E) for gelatin and sediment were used in finite element models to convert the forces in gelatin to those required in muds to maintain the same body shapes observed in gelatin. The force increases directly with increasing sediment stiffness, and is 0.16 N for measured sediment stiffness of E=2.7x10(4) Pa. This measurement of forces exerted by burrowers is the first that explicitly considers the mechanical behavior of the sediment. Calculated stress intensity factors fall within the range of critical values for gelatin and exceed those for sediment, showing that crack propagation is a mechanically feasible mechanism of burrowing. The pharynx extends anteriorly as it everts, extending the crack tip only as far as the anterior of the worm, consistent with wedge-driven fracture and drawing obvious parallels between soft-bodied burrowers and more rigid, wedge-shaped burrowers(i.e. clams). Our results raise questions about the reputed high energetic cost of burrowing and emphasize the need for better understanding of sediment mechanics to quantify external energy expenditure during burrowing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many potential applications for sintered aluminium are limited by the poor fatigue properties of the material. In order to increase understanding of the fatigue mechanisms in sintered aluminium, fatigue tests were carried out on a sintered 2xxx series aluminium alloy, AMB-2712. The alloy has a fatigue endurance strength of approximately 145 MPa (R = 0.1). Three regions were identified on the fatigue fracture surfaces. Region I contains the initiation site and transgranular crack propagation. When the size of the cyclic plastic zone ahead of the crack becomes comparable to the grain size, microstructural damage at the crack tip results in a transition to intergranular propagation. Region 2 mainly contains intergranularly fractured material, whilst the final fracture area makes up Region 3, in the form of dimple coalescence and intergranular failure. Transgranular fractographic features observed on fatigued specimens include fissure-type striations, cross-hatched grains, furrowed grains and grains containing step-like features. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fatigue crack initiation and propagation in aluminium butt welds has been investigated. It is shown that the initiation of cracks from both buried defects and. from the weld reinforcement may be quantified by predictive laws based on either linear elastic fracture mechanics, or on Neuber's rule of stress and strain ooncentrations. The former is preferable on the grounds of theoretical models of crack tip plasticity, although either may be used as the basis of an effeotive design criteria against crack initiation. Fatigue lives fol1owing initiation were found to follow predictions based on the integration of a Paris type power law. The effect of residual stresses from the welding operation on both initiation and propagation was accounted for by a Forman type equation. This incorporated the notional stress ratio produced by the residual stresses after various heat treatments. A fracture mechanics analysis was found to be useful in describing the fatigue behaviour of the weldments at increased temperatures up to 300°C. It is pointed out, however, that the complex interaction of residual stresses, frequency, and changes in fracture mode necessitate great caution in the application of any general design criteria against crack initiation and growth at elevated. temperatures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Magnox AL80 has been used for a study of creep crack propagation. A number of variables have been considered such as specimen geometry,notch root radius, material thickness, creep prestrain and stress level.The work has covered the material behaving under two values of the creep exponent, n=3.5 and n=7, according to the stress level. As well as observing initiation times and crack growth rates, scribed grids have been used to examine the near crack tip strain levels and distributions. It was shown that estimations of COD from notch flank opening can give misleading indications of material behaviour and that a more informative method was to monitor displacements in the material surrounding the crack tip. Strong evidence was found for crack advance being displacement controlled, however it was shown that the COD approach should be considered geometry dependant. The summation of ∈xx and ∈yy provided the most successful description of crack advance as it produced a single value that described propagation in all the cases concidered. The strain distributions indicates that σyy was related to distance from a point ahead of the crack tip by the exponent - (l/n+l) and that σxx is proportional to σyy. The constraint stresses arising in the DEN and CN specimens were evaluated. Initiation time was found to be principally affected by the stress level but was modified by the constraints arising from specimen geometry. Crack growth was found not to obey either the empirical K or σpett relationships but was reviewed in context of the observed strain behaviour.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fatigue crack growth in high strength aluminium alloy 7150 commercial plate material has been studied in both laboratory air and acidified aqueous salt solution. The aggressive aqueous environment enhanced fatigue crack growth rates by up to an order in magnitude compared to laboratory air. The enhancement in fatigue crack growth rate was accompanied by evidence of embrittlement in the crack path, involving both brittle intergranular and transgranular failure modes. Both the enhancement of fatigue crack growth rates and the extent of intergranular growth modes are dependent on cyclic frequency which, along with the absence of a similar frequency effect in a spray-formed version of the material with a significantly different grain structure, supports a mechanism of grain boundary hydrogen diffusion for intergranular corrosion fatigue crack growth. The convergence of corrosion fatigue crack growth rates at high ΔK in both spray-formed and conventional plate materials coincides with the operation of identical transgranular corrosion fatigue modes dependent on strain-controlled hydrogen diffusion ahead of the crack tip. © 1997 Acta Metallurgica Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effects of a thermal residual stress field on fatigue crack growth in a silicon carbide particle-reinforced aluminum alloy have been measured. Stress fields were introduced into plates of material by means of a quench from a solution heat-treatment temperature. Measurements using neutron diffraction have shown that this introduces an approximately parabolic stress field into the plates, varying from compressive at the surfaces to tensile in the center. Long fatigue cracks were grown in specimens cut from as-quenched plates and in specimens which were given a stress-relieving overaging heat treatment prior to testing. Crack closure levels for these cracks were determined as a function of the position of the crack tip in the residual stress field, and these are shown to differ between as-quenched and stress-relieved samples. By monitoring the compliance of the specimens during fatigue cycling, the degree to which the residual stresses close the crack has been evaluated. © 1995 The Minerals, Metals & Material Society.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fatigue crack initiation and propagation in duplex stainless steels are strongly affected by microstructure in both inert and aggressive environments. Fatigue crack growth rates in wrought Zeron 100 duplex stainless steel in air were found to vary with orientation depending on the frequency of crack tip retardation at ferrite/austenite grain boundaries. Fatigue crack propagation rates in 3.5% NaCl solution and high purity water are increased by hydrogen assisted transgranular cyclic cleavage of the ferrite. The corrosion fatigue results are interpreted using a model for the cyclic cleavage mechanism.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A study of the influence of macroscopic quenching stresses on long fatigue crack growth in an aluminium alloy-SiC composite has been made. Direct comparison between quenched plate, where high residual stresses are present, and quenched and stretched plate, where they have been eliminated, has highlighted their rôle in crack closure. Despite similar strength levels and identical crack growth mechanisms, the stretched composite displays faster crack growth rates over the complete range of ΔK, measured at R = 0.1, with threshold being displaced to a lower nominal ΔK value. Closure levels are dependent upon crack length, but are greater in the unstretched composite, due to the effect of surface compressive stresses acting to close the crack tip. These result in lower values of ΔKeff in the unstretched material, explaining the slower crack growth rates. Effective ΔKth values are measured at 1.7 MPa√m, confirmed by constant Kmax testing. In the absence of residual stress, closure levels of approximately 2.5 MPa√m are measured and this is attributed to a roughness mechanism.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hydrogen assisted subcritical cleavage of the ferrite matrix occurs during fatigue of a duplex stainless steel in gaseous hydrogen. The ferrite fails by a cyclic cleavage mechanism and fatigue crack growth rates are independent of frequency between 0.1 and 5 Hz. Macroscopic crack growth rates are controlled by the fraction of ferrite grains cleaving along the crack front, which can be related to the maximum stress intensity, Kmax. A superposition model is developed to predict simultaneously the effects of stress intensity range (ΔK) and K ratio (Kmin/Kmax). The effect of Kmax is rationalised by a local cleavage criterion which requires a critical tensile stress, normal to the {001} cleavage plane, acting over a critical distance within an embrittled zone at the crack tip. © 1991.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effects of temperature on hydrogen assisted fatigue crack propagation are investigated in three steels in the low-to-medium strength range; a low alloy structural steel, a super duplex stainless steel, and a super ferritic stainless steel. Significant enhancement of crack growth rates is observed in hydrogen gas at atmospheric pressure in all three materials. Failure occurs via a mechanism of time independent, transgranular, cyclic cleavage over a frequency range of 0.1-5 Hz. Increasing the temperature in hydrogen up to 80°C markedly reduces the degree of embrittlement in the structural and super ferritic steels. No such effect is observed in the duplex stainless steel until the temperature exceeds 120°C. The temperature response may be understood by considering the interaction between absorbed hydrogen and micro-structural traps, which are generated in the zone of intense plastic deformation ahead of the fatigue crack tip. © 1992.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Consideration of the influence of test technique and data analysis method is important for data comparison and design purposes. The paper highlights the effects of replication interval, crack growth rate averaging and curve-fitting procedures on crack growth rate results for a Ni-base alloy. It is shown that an upper bound crack growth rate line is not appropriate for use in fatigue design, and that the derivative of a quadratic fit to the a vs N data looks promising. However, this type of averaging, or curve fitting, is not useful in developing an understanding of microstructure/crack tip interactions. For this purpose, simple replica-to-replica growth rate calculations are preferable. © 1988.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fatigue crack growth behaviour in a 15 wt% SiC particulate reinforced 6061 aluminium alloy has been examined using pre-cracked specimens. Crack initiation and early growth of fatigue cracks in smooth specimens has also been investigated using the technique of periodic replication. The composite contained a bimodal distribution of SiC particle sizes, and detailed attention was paid to interactions between the SiC particles and the growing fatigue-crack tip. At low stress intensity levels, the proportion of coarse SiC particles on the fatigue surfaces was much smaller than that on the metallographic sections, indicating that the fatigue crack tends to run through the matrix avoiding SiC particles. As the stress intensity level increases, the SiC particles ahead of the growing fatigue crack tip are fractured and the fatigue crack then links the fractured particles. The contribution of this monotonic fracture mode resulted in a higher growth rate for the composite than for the unreinforced alloy. An increase in the proportion of cracked, coarse SiC particles on the fatigue surface was observed for specimens tested at a higher stress ratio.