932 resultados para corneal stroma
Resumo:
The oro-ocular cleft no. 4 according to the Tessier classification is one of the rarest facial cleft, and to this day, few cases have been reported in the literature. We describe the case of a 9-month-old girl with a complete bilateral facial cleft. On the right cornea protruded a hard lesion, a corneal staphyloma. We describe the 3 primary surgical steps used to restore the possibility of satisfactory feeding, to promote language acquisition, and to protect vision in the nonaffected eye. The psychological and social aspects of severe facial deformities in developing countries are also tackled.
Resumo:
Primary tumor growth induces host tissue responses that are believed to support and promote tumor progression. Identification of the molecular characteristics of the tumor microenvironment and elucidation of its crosstalk with tumor cells may therefore be crucial for improving our understanding of the processes implicated in cancer progression, identifying potential therapeutic targets, and uncovering stromal gene expression signatures that may predict clinical outcome. A key issue to resolve, therefore, is whether the stromal response to tumor growth is largely a generic phenomenon, irrespective of the tumor type or whether the response reflects tumor-specific properties. To address similarity or distinction of stromal gene expression changes during cancer progression, oligonucleotide-based Affymetrix microarray technology was used to compare the transcriptomes of laser-microdissected stromal cells derived from invasive human breast and prostate carcinoma. Invasive breast and prostate cancer-associated stroma was observed to display distinct transcriptomes, with a limited number of shared genes. Interestingly, both breast and prostate tumor-specific dysregulated stromal genes were observed to cluster breast and prostate cancer patients, respectively, into two distinct groups with statistically different clinical outcomes. By contrast, a gene signature that was common to the reactive stroma of both tumor types did not have survival predictive value. Univariate Cox analysis identified genes whose expression level was most strongly associated with patient survival. Taken together, these observations suggest that the tumor microenvironment displays distinct features according to the tumor type that provides survival-predictive value.
Resumo:
PURPOSE: To investigate the involvement of the cornea during endotoxin-induced uveitis (EIU) in the rat and the effect of Ngamma-nitro-L-arginine methyl ester (L-NAME) as nitric oxide synthase (NOS) inhibitor, administered by iontophoresis. METHODS: EIU was induced in Lewis rats that were killed at 8 and 16 hours after lipopolysaccharide (LPS) injection. The severity of uveitis was evaluated clinically at 16 hours, and nitrite levels were evaluated in the aqueous humor at 8 hours. Corneal thickness was measured, 16 hours after LPS injection, on histologic sections using an image analyzer. Transmission electron microscopy (TEM) was used for fine analysis of the cornea. Transcorneoscleral iontophoresis of L-NAME (100 mM) was performed either at LPS injection or at 1 and 2 hours after LPS injection. RESULTS: At 16 hours after LPS injection, mean corneal thickness was 153.7+/-5.58 microm in the group of rats injected with LPS (n=8) compared with 126.89+/-11.11 microm in the saline-injected rats (n=8) (P < 0.01). TEM showed stromal edema and signs of damage in the endothelial and epithelial layers. In the group of rats treated by three successive iontophoreses of L-NAME (n=8), corneal thickness was 125.24+/-10.36 microm compared with 146.76+/-7.52 microm in the group of rats treated with iontophoresis of saline (n=8), (P=0.015). TEM observation showed a reduction of stromal edema and a normal endothelium. Nitrite levels in the aqueous humor were significantly reduced at 8 hours by L-NAME treatment (P=0.03). No effect on corneal edema was observed after a single iontophoresis of L-NAME at LPS injection (P=0.19). Iontophoresis of saline by itself induced no change in corneal thickness nor in TEM structure analysis compared with normal rats. CONCLUSIONS: Corneal edema is observed during EIU. This edema is significantly reduced by three successive iontophoreses of L-NAME, which partially inhibited the inflammation. A role of nitric oxide in the corneal endothelium functions may explain the antiedematous effect of L-NAME.
Resumo:
Mutations in the BIGH3 gene on chromosome 5q31 cause four distinct autosomal dominant diseases of the human cornea: granular (Groenouw type I), Reis-Bücklers, lattice type I, and Avellino corneal dystrophies. All four diseases are characterized by both progressive accumulation of corneal deposits and eventual loss of vision. We have identified a specific recurrent missense mutation for each type of dystrophy, in 10 independently ascertained families. Genotype analysis with microsatellite markers surrounding the BIGH3 locus was performed in these 10 families and in 5 families reported previously. The affected haplotype could be determined in 10 of the 15 families and was different in each family. These data indicate that R555W, R124C, and R124H mutations occurred independently in several ethnic groups and that these mutations do not reflect a putative founder effect. Furthermore, this study confirms the specific importance of the R124 and R555 amino acids in the pathogenesis of autosomal dominant corneal dystrophies linked to 5q.
Resumo:
Drosophila melanogaster is a model organism instrumental for numerous biological studies. The compound eye of this insect consists of some eight hundred individual ommatidia or facets, ca. 15 µm in cross-section. Each ommatidium contains eighteen cells including four cone cells secreting the lens material (cornea). High-resolution imaging of the cornea of different insects has demonstrated that each lens is covered by the nipple arrays--small outgrowths of ca. 200 nm in diameter. Here we for the first time utilize atomic force microscopy (AFM) to investigate nipple arrays of the Drosophila lens, achieving an unprecedented visualization of the architecture of these nanostructures. We find by Fourier analysis that the nipple arrays of Drosophila are disordered, and that the seemingly ordered appearance is a consequence of dense packing of the nipples. In contrast, Fourier analysis confirms the visibly ordered nature of the eye microstructures--the individual lenses. This is different in the frizzled mutants of Drosophila, where both Fourier analysis and optical imaging detect disorder in lens packing. AFM reveals intercalations of the lens material between individual lenses in frizzled mutants, providing explanation for this disorder. In contrast, nanostructures of the mutant lens show the same organization as in wild-type flies. Thus, frizzled mutants display abnormal organization of the corneal micro-, but not nano-structures. At the same time, nipples of the mutant flies are shorter than those of the wild-type. We also analyze corneal surface of glossy-appearing eyes overexpressing Wingless--the lipoprotein ligand of Frizzled receptors, and find the catastrophic aberration in nipple arrays, providing experimental evidence in favor of the major anti-reflective function of these insect eye nanostructures. The combination of the easily tractable genetic model organism and robust AFM analysis represents a novel methodology to analyze development and architecture of these surface formations.
Resumo:
Purpose: To report the findings of the clinical and molecular evaluation in a Greek family with fleck corneal dystrophy (CFD).Methods: A 58-year-old woman was seen on routine ophthalmic examination and diagnosed as having CFD. All available family members were examined to evaluate the clinical findings and inheritance of the disease. Twenty members of the family in five generations underwent slit-lamp examination. Eleven were females and nine males, aged from two years to 85 years old. Blood samples were available from four patients with CFD and seven unaffected relatives, and the DNAs were subjected to molecular screening of the phosphoinositide kinase, five finger-containing (PIKFYVE) gene by direct sequencing or denaturing high performance liquid chromatography (DHPLC).Results: The clinical evaluation revealed six family members (five females and one male) with CFD. In two CFD patients early cataract formation was noticed. All patients affected with the corneal dystrophy were asymptomatic. The molecular analyses demonstrated the existence of a novel c. 3060-3063delCCTT (p.P968Vfs23) mutation in PIKFYVE in all CFD patients tested but in none of the six unaffected family members. No molecular screening was performed in the seventh unaffected member as the causative mutation was clearly transmitted from his affected wife to his affected son.Conclusions: We report on the clinical and molecular findings of a five generation Greek family with CFD and we conclude that the novel c. 3060-3063delCCTT (p. P968Vfs23) mutation in PIKFYVE, which segregated with the disease, was the causative mutation in this family.
Resumo:
PURPOSE: Recently, the authors identified a gene, BIGH3, in which different mutations cause a group of hereditary corneal dystrophies: lattice type I and IIIA (CDLI and CDLIIIA), granular Groenouw type I (CDGGI), Avellino (CDA), and Reis-Bücklers' (CDRB). All these disorders are characterized by the progressive accumulation of corneal deposits with different structural organization. Experiments were conducted to determine the role of kerato-epithelin (KE), the product of BIGH3, in the pathogenesis of the diseases. METHODS: KE-15 and KE-2, two rabbit antisera raised against peptides from the 69-364 and 426 - 682 amino acid regions of KE respectively, were used for immunohistology of the corneas obtained after keratoplasty in six CDLI patients, three CDGGI patients, and one CDA patient. RESULTS: The nonamyloid deposits observed in CDGGI stained intensively with KE-15 and KE-2, whereas the amyloid deposits in all analyzed CDLI corneas reacted to KE-2 but not to KE-15. In the CDA cornea, where amyloid and nonamyloid inclusions were present, positive staining with both antisera was observed. CONCLUSIONS: Pathologic amyloid and nonamyloid deposits observed in CDLI, CDGGI-, and CDA-affected corneas are caused by KE accumulation. Different staining patterns of amyloid and nonamyloid deposits observed with antibodies against the amino and carboxyl termini of KE suggest that two mechanisms of KE misfolding are implicated in the pathogenesis of 5q31-linked corneal dystrophies.
Resumo:
Multifocal and recurrent epithelial tumors, originating from either dormant or de novo cancer cells, are major causes of morbidity and mortality. The age-dependent increase of cancer incidence has long been assumed to result from the sequential accumulation of cancer-driving or -facilitating mutations with induction of cellular senescence as a protective mechanism. However, recent evidence suggests that the initiation and development of epithelial cancer results from a close interplay with its altered tissue microenvironment, with chronic inflammation, stromal senescence, autophagy, and the activation of cancer-associated fibroblasts (CAFs) playing possible primary roles. We will discuss recent progress in these areas, and highlight how this understanding may be used for devising novel preventive and therapeutic approaches to the epithelial cancer problem.
Resumo:
Corneal integrity and transparency are indispensable for good vision. Cornea homeostasis is entirely dependent upon corneal stem cells, which are required for complex wound-healing processes that restore corneal integrity following epithelial damage. Here, we found that leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) is highly expressed in the human holoclone-type corneal epithelial stem cell population and sporadically expressed in the basal cells of ocular-surface epithelium. In murine models, LRIG1 regulated corneal epithelial cell fate during wound repair. Deletion of Lrig1 resulted in impaired stem cell recruitment following injury and promoted a cell-fate switch from transparent epithelium to keratinized skin-like epidermis, which led to corneal blindness. In addition, we determined that LRIG1 is a negative regulator of the STAT3-dependent inflammatory pathway. Inhibition of STAT3 in corneas of Lrig1-/- mice rescued pathological phenotypes and prevented corneal opacity. Additionally, transgenic mice that expressed a constitutively active form of STAT3 in the corneal epithelium had abnormal features, including corneal plaques and neovascularization similar to that found in Lrig1-/- mice. Bone marrow chimera experiments indicated that LRIG1 also coordinates the function of bone marrow-derived inflammatory cells. Together, our data indicate that LRIG1 orchestrates corneal-tissue transparency and cell fate during repair, and identify LRIG1 as a key regulator of tissue homeostasis.
Resumo:
Background: To compare the different schemes that have been proposed during the last thirteen years to explain the renewal of the corneal epithelium. Material and Methods:We analyzed all the data present in the literature to explain the renewal of the corneal epithelium in mammals. According to the schemes proposed in the literature we developed a 3D animation to facilitate the understanding of the different concepts. Results:Three different schemes have been proposed to explain the renewal of the corneal epithelium in mammals during the last thirteen years. 1950-1981: the corneal epithelium was thought being renewed by mitosis of cells located in the basal layer. At this time scientist were not talking about stem cells. 1981-1986 was the period of the "XYZ hypothesis" or the transdifferentiation paradigm. At this time the conjunctival epithelium renewed the corneal epithelium in a centripetal migration. 1986-2008: the limbal stem cell paradigm, there were no stem cells in the corneal epithelium, all the corneal stem cells were located in the limbus and renewed the central cornea after a migration of 6 to 7 mm of transient amplifying cells toward the centre of the cornea. 2008, epithelial stem cells were found in the central cornea in mammals (Nature, Majo et al. November 2008). Discussion:We thought that the renewal of the corneal epithelium was completely defined. According to the last results we published in Nature, the current paradigm will be revisited. The experiments we made were on animals and the final demonstration on human has still to be done. If we find the same results in human, a new paradigm will be define and will change the way we consider ocular surface therapy and reconstruction.
Resumo:
Tenascins are extracellular matrix proteins present during the development of organisms as well as in pathological conditions. Tenascin-W, the fourth and last member of the tenascin family remains the least well-characterized one. Our study aimed to evaluate the potential significance of tenascin-W as cancer biomarker by monitoring its presence in the serum of colorectal and breast cancer patients and its expression in colorectal tumor tissues. To measure serum tenascin-W levels, a sensitive sandwich-ELISA was established. Mean tenascin-W concentration in sera of patients with nonmetastatic colorectal cancer at time of diagnosis was highly increased compared to that of healthy volunteers. A similar tendency was observed for tenascin-C in the same patient cohort. However, the increase was much more striking for tenascin-W. We also detected elevated tenascin-W levels in sera of breast cancer patients. Furthermore, we could show a prominent expression of tenascin-W in extracts from colorectal tumor tissues by immunoblot analysis, whereas tenascin-W was not detectable in the corresponding normal colon mucosa. To confirm the western blot results, we performed immunohistochemistry of frozen sections of the same patients as well as of an additional, independently chosen collection of colorectal cancer tissues. In all cases, similarly to tenascin-C, tenascin-W was detected in the tumor stroma. Our results reveal a clear association between elevated levels of tenascin-W and the presence of cancer. These results warrant further studies to evaluate the potential value of serum and tissue tenascin-W levels as diagnostic, prognostic or monitoring biomarker in colorectal, breast and possibly other solid cancers.
Resumo:
The generation of lymphoid microenvironments in early life depends on the interaction of lymphoid tissue-inducer cells with stromal lymphoid tissue-organizer cells. Whether this cellular interface stays operational in adult secondary lymphoid organs has remained elusive. We show here that during acute infection with lymphocytic choriomeningitis virus, antiviral cytotoxic T cells destroyed infected T cell zone stromal cells, which led to profound disruption of secondary lymphoid organ integrity. Furthermore, the ability of the host to respond to secondary antigens was lost. Restoration of the lymphoid microanatomy was dependent on the proliferative accumulation of lymphoid tissue-inducer cells in secondary lymphoid organs during the acute phase of infection and lymphotoxin alpha(1)beta(2) signaling. Thus, crosstalk between lymphoid tissue-inducer cells and stromal cells is reactivated in adults to maintain secondary lymphoid organ integrity and thereby contributes to the preservation of immunocompetence.
Resumo:
Summary Secondary lymphoid organs (SLOB), such as lymph nodes and spleen, are the sites where primary immune responses are initiated. T lymphocytes patrol through the blood and SLOs on the search for pathogens which are presented to them as antigens by dendritic cells. Stromal cells in the Tzone - so called T zone fibroblastic reticular cells (TRCs) -are critical in organizing the migration of T cells and dendritic cells by producing the chemoattractants CCL19 and CCL21 and by forming a network which T cells use as a guidance system. They also form a system of small channels or conduits that allow rapid transport of small antigen molecules or cytokines from the subcapsular sinus to high endothelial venules. The phenotype and function of TRCs have otherwise remained largely unknown. We found a critical role for lymph node access in CD4+ and CD8+ T cell homeostasis and identified TRCs within these organs as the major source of interleukin-7 (IL-7). IL-7 is an essential survival factor for naïve T lymphocytes of which the cellular source in the periphery had been poorly defined. In vitro, TRC were able to prevent the death of naïve T but not of B lymphocytes by secreting IL-7 and the CCR7 ligand CCL 19. Using gene-targeted mice, we show anon-redundant function of CCL19 in T cell homeostasis. The data suggest that TRCs regulate T cell numbers by providing a limited reservoir of survival factors for which T cells have to compete. They help to maintain a diverse T cell repertoire granting full immunocompetence. To determine whether TRCs also play a role in pathology, we characterized so-called tertiary lymphoid organs (TLOs) that often develop at sites of chronic inflammation. We show that TLOs resemble lymph nodes or Peyer's patches not only with regard to lymphoid cells. TLOs formed extensive TRC networks and a functional conduit system in all three marine inflammation models tested. In one model we dissected the cells and signals leading to the formation of these structures. We showed that they critically depend on the presence of lymphotoxin and lymphoid tissue inducer cells. TRCs in TLOs also produce CCL19, GCL21 and possibly IL-7 which are all involved in the development of TLOs. Stromal cells therefore play a central role in the onset and perpetuation of chronic inflammatory diseases and could be an interesting target for therapy. Résumé Le système immunitaire est la défense de notre corps contre toutes sortes d'infections et de tumeurs. II est constitué de différentes populations de lymphocytes qui patrouillent constamment le corps à la recherche de pathogène. Parmi eux, les lymphocytes T et B passent régulièrement dans les organes lymphoïdes secondaires (SLO) qui sont les sites d'initiation de la réponse immunitaire. Les lymphocytes T sont recrutés du sang aux SLO où ils cherchent leur antigène respectif présenté par des cellules dendritiques. Des cellules stromales dans la zone T -nommées fibroblastic reticular cells' (TRC) -sécrètent des chimiokines CCL19 et CCL21 et ainsi facilitent les rencontres entre lymphocytes T et cellules dendritiques. De plus, elles forment un réseau que les lymphocytes T utilisent comme système de guidage. Ce réseau forme des petits canaux (ou conduits) qui permettent le transport rapide, d'antigène soluble ou de cytokines, de la lymphe aux veinules à endothelium épais (HEV). Le phénotype ainsi que les autres fonctions des TRCs demeurent encore à ce jour inconnus. Nous avons trouvé que l'accès des lymphocytes T CD4+ et CD8+ aux ganglions joue un rôle central pour l'homéostasie. Interleukin-7 (IL-7) est un facteur de survie essentiel pour les lymphocytes T naïfs dont la source cellulaire dans la périphérie était mal définie. Nous avons identifié les TRCs dans les ganglions comme source principale d'interleukin-7 (IL-7). In vitro, les TRCs étaient capable de prévenir la mort des lymphocytes T mais pas celle de lymphocytes B grâce à la sécrétion d'IL-7 et de CCL19. En utilisant des souris déficientes du gène CCL19, nous avons observé que l'homéostasie des lymphocytes T dépend aussi de CCL19 in vivo. Les données suggèrent que les TRCs aident à maintenir un répertoire large et diversifié de cellules T et ainsi l'immunocompétence. Pour déterminer si les TRCs pourraient jouer un rote également dans la pathologie, nous avons caractérisé des organes lymphoïdes tertiaires (TLOs) souvent associés avec l'inflammation chronique. Les TLOs ressemblent à des ganglions ou des plaques de Peyer pas seulement en ce qui concerne la présence de lymphocytes. Nous avons constaté que les TLOs forment des réseaux de TRC et un système fonctionnel de conduits. La formation de ces structures est fortement diminuée dans l'absence du signal lymphotoxin ou des cellules connues comme ymphoid tissue-inducer tells: Les TRCs dans les TLOs produisent les chimiokines CCL19, CCL21 et possiblement aussi IL-7 qui sont impliquées dans le développement des TLOs. Les cellules stromales jouent donc un rôle central dans l'initation et la perpétuation des maladies inflamatoires chroniques et pourraient être une cible intéressante pour la thérapie.
Resumo:
Corneal samples of cats with and without corneal diseases were screened with a pan-Chlamydiales PCR and specific PCRs for Parachlamydia, Protochlamydia, Chlamydophila felis, Acanthamoeba and feline herpesviruses (FHV-1). Several corneal samples tested positive for Parachlamydia and related Chlamydiales, indicating cat exposure to these intracellular bacteria.
Resumo:
PURPOSE: To describe new affected individuals of Franceschetti's original pedigree of hereditary recurrent erosion and to classify a unique entity called Franceschetti corneal dystrophy. DESIGN: Observational case series. METHODS: Slit-lamp examination of 10 affected individuals was conducted. Biomicroscopic examinations were supplemented by peripheral corneal biopsy in 1 affected patient with corneal haze. Tissue was processed for light and electron microscopy and immunohistochemistry was performed. DNA analysis was carried out in 12 affected and 3 nonaffected family members. RESULTS: All affected individuals suffered from severe ocular pain in the first decade of life, attributable to recurrent corneal erosions. Six adult patients developed bilateral diffuse subepithelial opacifications in the central and paracentral cornea. The remaining 4 affected individuals had clear corneas in the pain-free stage of the disorder. Histologic and immunohistochemical examination of the peripheral cornea in a single patient showed a subepithelial, avascular pannus. There was negative staining with Congo red. DNA analysis excluded mutations in the transforming growth factor beta-induced (TGFBI) gene and in the tumor-associated calcium signal transducer 2 (TACSTD2) gene. CONCLUSION: We have extended the pedigree of Franceschetti corneal dystrophy and elaborated its natural history on the basis of clinical examinations. A distinctive feature is the appearance of subepithelial opacities in adult life, accompanied by a decreased frequency of recurrent erosion attacks. Its clinical features appear to distinguish it from most other forms of dominantly inherited recurrent corneal erosion reported in the literature.