996 resultados para core-annular flow


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE Mechanical thrombectomy using stent retriever devices have been advocated to increase revascularization in intracranial vessel occlusion. We present the results of a large prospective study on the use of the Solitaire Flow Restoration in patients with acute ischemic stroke. METHODS Solitaire Flow Restoration Thrombectomy for Acute Revascularization was an international, multicenter, prospective, single-arm study of Solitaire Flow Restoration thrombectomy in patients with large vessel anterior circulation strokes treated within 8 hours of symptom onset. Strict criteria for site selection were applied. The primary end point was the revascularization rate (thrombolysis in cerebral infarction ≥2b) of the occluded vessel as determined by an independent core laboratory. The secondary end point was the rate of good functional outcome (defined as 90-day modified Rankin scale, 0-2). RESULTS A total of 202 patients were enrolled across 14 comprehensive stroke centers in Europe, Canada, and Australia. The median age was 72 years, 60% were female patients. The median National Institute of Health Stroke Scale was 17. Most proximal intracranial occlusion was the internal carotid artery in 18%, and the middle cerebral artery in 82%. Successful revascularization was achieved in 79.2% of patients. Device and procedure-related severe adverse events were found in 7.4%. Favorable neurological outcome was found in 57.9%. The mortality rate was 6.9%. Any intracranial hemorrhagic transformation was found in 18.8% of patients, 1.5% were symptomatic. CONCLUSIONS In this single-arm study, treatment with the Solitaire Flow Restoration device in intracranial anterior circulation occlusions results in high rates of revascularization, low risk of clinically relevant procedural complications, and good clinical outcomes in combination with low mortality at 90 days. CLINICAL TRIAL REGISTRATION URL http://www.clinicaltrials.gov. Unique identifier: NCT01327989.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphorus (P) is an essential macronutrient for all living organisms. Phosphorus is often present in nature as the soluble phosphate ion PO43– and has biological, terrestrial, and marine emission sources. Thus PO43– detected in ice cores has the potential to be an important tracer for biological activity in the past. In this study a continuous and highly sensitive absorption method for detection of dissolved reactive phosphorus (DRP) in ice cores has been developed using a molybdate reagent and a 2-m liquid waveguide capillary cell (LWCC). DRP is the soluble form of the nutrient phosphorus, which reacts with molybdate. The method was optimized to meet the low concentrations of DRP in Greenland ice, with a depth resolution of approximately 2 cm and an analytical uncertainty of 1.1 nM (0.1 ppb) PO43–. The method has been applied to segments of a shallow firn core from Northeast Greenland, indicating a mean concentration level of 2.74 nM (0.26 ppb) PO43– for the period 1930–2005 with a standard deviation of 1.37 nM (0.13 ppb) PO43– and values reaching as high as 10.52 nM (1 ppb) PO43–. Similar levels were detected for the period 1771–1823. Based on impurity abundances, dust and biogenic particles were found to be the most likely sources of DRP deposited in Northeast Greenland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deep geological storage of radioactive waste foresees cementitious materials as reinforcement of tunnels and as backfill. Bentonite is proposed to enclose spent fuel canisters and as drift seals. Sand/bentonite (s/b) is foreseen as backfill material of access galleries or as drift seals. The emplacement of cementitious material next to clay material generates an enormous chemical gradient in pore-water composition that drives diffusive solute transport. Laboratory studies and reactive transport modeling predicted significant mineral alteration at and near interfaces, mainly resulting in a decrease of porosity in bentonite. The goal of this thesis was to characterize and quantify the cement/bentonite interactions both spatially and temporally in laboratory experiments. A newly developed mobile X-ray transparent core infiltration device was used to perform X-ray computed tomography (CT) scans without interruption of running experiments. CT scans allowed tracking the evolution of the reaction plume and changes in core volume/diameter/density during the experiments. In total 4 core infiltration experiments were carried out for this study with the compacted and saturated cores consisting of MX-80 bentonite and sand/MX-80 bentonite mixture (s/b; 65/35%). Two different high-pH cementitious pore-fluids were infiltrated: a young (early) ordinary Portland cement pore-fluid (APWOPC; K+–Na+–OH-; pH 13.4; ionic strength 0.28 mol/kg) and a young ‘low-pH’ ESDRED shotcrete pore-fluid (APWESDRED; Ca2+–Na+–K+–formate; pH 11.4; ionic strength 0.11 mol/kg). The experiments lasted between 1 and 2 years. In both bentonite experiments, the hydraulic conductivity was strongly reduced after switching to high-pH fluids, changing eventually from an advective to a diffusion-dominated transport regime. The reduction was mainly induced by mineral precipitation and possibly partly also by high ionic strength pore-fluids. Both bentonite cores showed a volume reduction and a resulting transient flow in which pore-water was squeezed out during high-pH infiltration. The outflow chemistry was characterized by a high ionic strength, while chloride in the initial pore water got replaced as main anionic charge carrier by sulfate, originating from gypsum dissolution. The chemistry of the high-pH fluids got strongly buffered by the bentonite, consuming hydroxide and in case of APWESDRED also formate. Hydroxide got consumed by mineral reactions (saponite and possibly talc and brucite precipitation), while formate being affected by bacterial degradation. Post-mortem analysis showed reaction zones near the inlet of the bentonite core, characterized by calcium and magnesium enrichment, consisting predominately of calcite and saponite, respectively. Silica got enriched in the outflow, indicating dissolution of silicate-minerals, identified as preferentially cristobalite. In s/b, infiltration of APWOPC reduced the hydraulic conductivity strongly, while APWESDRED infiltration had no effect. The reduction was mainly induced by mineral precipitation and probably partly also by high ionic strength pore-fluids. Not clear is why the observed mineral precipitates in the APWESDRED experiment had no effect on the fluid flow. Both s/b cores showed a volume expansion along with decreasing ionic strengths of the outflow, due to mineral reactions or in case of APWESDRED infiltration also mediated by microbiological activity, consuming hydroxide and formate, respectively. The chemistry of the high-pH fluids got strongly buffered by the s/b. In the case of APWESDRED infiltration, formate reached the outflow only for a short time, followed by enrichment in acetate, indicating most likely biological activity. This was in agreement to post-mortem analysis of the core, observing black spots on the inflow surface, while the sample had a rotten-egg smell indicative of some sulfate reduction. Post-mortem analysis showed further in both cores a Ca-enrichment in the first 10 mm of the core due to calcite precipitation. Mg-enrichment was only observed in the APWOPC experiment, originating from newly formed saponite. Silica got enriched in the outflow of both experiments, indicating dissolution of silicate-minerals, identified in the OPC experiment as cristobalite. The experiments attested an effective buffering capacity for bentonite and s/b, a progressing coupled hydraulic-chemical sealing process and also the preservation of the physical integrity of the interface region in this setup with a total pressure boundary condition on the core sample. No complete pore-clogging was observed but the hydraulic conductivity got rather strongly reduced in 3 experiments, explained by clogging of the intergranular porosity (macroporosity). Such a drop in hydraulic conductivity may impact the saturation time of the buffer in a nuclear waste repository, although the processes and geometry will be more complex in repository situation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Infiltration is dominantly gravity driven, and a viscous-flow approach was developed. Laminar film flow equilibrates gravity with the viscous force and a constant flow velocity evolves during a period lasting 3/2 times the duration of a constant input rate, qS. Film thickness F and the specific contact area L of the film per unit soil volume are the key parameters. Sprinkler irrigation produced in situ time series of volumetric water contents, θ(z,t), as determined with TDR probes. The wetting front velocity v and the time series of the mobile water content, w(z,t) were deduced from θ(z,t). In vitro steady flow in a core of saturated soil provided volume flux density, q(z,t), and flow velocity, v, as determined from a heat front velocity. The F and L parameters of the in situ and the in vitro experiments were compared. The macropore-flow restriction states that, for a particular permeable medium, the specific contact area L must be independent from qS i.e., dL/dqS = 0. If true, then the relationship of qS ∝ v3/2 could scale a wide range of input rates 0 ≤ qS ≤ saturated hydraulic conductivity, Ksat, into a permeable medium, and kinematic-wave theory would become a versatile tool to deal with non-equilibrium flow. The viscous-flow approach is based on hydromechanical principles similar to Darcy’s law, but currently it is not suited to deduce flow properties from specified individual spatial structures of permeable media.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cape Roberts Project drill core 3 (CRP-3) was obtained from Roberts ridge, a sea-floor high located at 77°S, 12 km offshore from Cape Roberts in western McMurdo Sound, Antarctica. The recovered core is about 939 m long and comprises strata dated as being early Oligocene (possibly latest Eocene) in age, resting unconformably on ~116 m of basement rocks consisting of Palaeozoic Beacon Supergroup sediments. The core includes ten facies commonly occurring in five major associations that are repeated in particular sequences throughout the core and which are interpreted as representing different depositional environments through time. Depositional systems inferred to be represented in the succession include: outer shelf, inner shelf, nearshore to shoreface each under iceberg influence, deltaic and/or grounding-line fan, and ice proximal-ice marginal-subglacial (mass flow/rainout diamictite/subglacial till) singly or in combination. The record is taken to represent the initial talus/alluvial fan setting of a glaciated rift margin adjacent to the block-uplifted Transantarctic Mountains. Development of a deltaic succession upcore was probably associated with the formation of palaeo-Mackay valley with temperate glaciers in its headwaters. At that stage glaciation was intense enough to support glaciers ending in the sea elsewhere along the coast, but a local glacier was fluctuating down to the sea by the time the youngest part of CRP-3 was being deposited. Changes in palaeoenvironmental interpretations in this youngest part of the core are used to estimate relative glacial proximity to the drillsite through time. These inferred glacial fluctuations are compared with the global d180 and Mg/Ca curves to evaluate the potential of glacial fluctuations on Antarctica for influencing these records of global change. Although the comparisons are tentative at present, the records do have similarities, but there are also some differences that require further evaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compare the present and last interglacial periods as recorded in Antarctic water stable isotope records now available at various temporal resolutions from six East Antarctic ice cores: Vostok, Taylor Dome, EPICA Dome C (EDC), EPICA Dronning Maud Land (EDML), Dome Fuji and the recent TALDICE ice core from Talos Dome. We first review the different modern site characteristics in terms of ice flow, meteorological conditions, precipitation intermittency and moisture origin, as depicted by meteorological data, atmospheric reanalyses and Lagrangian moisture source diagnostics. These different factors can indeed alter the relationships between temperature and water stable isotopes. Using five records with sufficient resolution on the EDC3 age scale, common features are quantified through principal component analyses. Consistent with instrumental records and atmospheric model results, the ice core data depict rather coherent and homogenous patterns in East Antarctica during the last two interglacials. Across the East Antarctic plateau, regional differences, with respect to the common East Antarctic signal, appear to have similar patterns during the current and last interglacials. We identify two abrupt shifts in isotopic records during the glacial inception at TALDICE and EDML, likely caused by regional sea ice expansion. These regional differences are discussed in terms of moisture origin and in terms of past changes in local elevation histories, which are compared to ice sheet model results. Our results suggest that elevation changes may contribute significantly to inter-site differences. These elevation changes may be underestimated by current ice sheet models

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cape Roberts drillhole CRP-3 in the northern part of McMurdo Sound (Ross Sea, Antarctica) targeted the western margin of the Victoria Land basin to investigate Neogene to Palaeogene climatic and tectonic history by obtaining continuous core and downhole logs (Cape Roberts Science Team, 2000). The CRP-3 drillhole extended to 939.42 mbsf (meters below seafloor) at a water depth of 297 m. The first downhole measurements after drilling were the temperature and salinity logs. Both were measured at the beginning and at the end of each of the three logging phases. Although an equilibrium temperature state may not have been fully reached after drilling, the temperature and salinity profiles seem to be scarcely disturbed. The average overall temperature gradient calculated from all temperature measurements is 28.5 K/km; remarkably lower than the temperature gradients found in other boreholes in the western Ross See and the Transantarctic Mountains. Anomalies in the salinity profiles at the beginning of each logging phase were no longer present at the end of the corresponding logging phase. This pattern indicates that drilling mud invaded the formation during drilling operations and flowed back into the borehole after drilling ceased. Thus, zones of temperature and salinity anomalies identify permeable zones in the formation and may be pathways for fluid flow. Radiogenic heat production, calculated from the radionuclide contents, is relatively low, with average values between 0.5 and 1.0 pW/m3. The highest values (up to 2 µW/m3) were obtained for the lower part of the Beacon Sandstone below 855 mbsf. The heat flow component due to radiogenic heat production integrated over the entire borehole is 0.7 mW/m2. Thermal conductivities range from 1.3 to 3 W/mK with an average value of 2.1 W/mK over the Tertiary section. Together with the average temperature gradient of 28.5 K/km this yields an average heat flow value of 60 mW/m2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dust can affect the radiative balance of the atmosphere by absorbing or reflecting incoming solar radiation and it can be a source of micronutrients, such as iron, to the ocean. It has been suggested that production, transport, and deposition of dust is influenced by climatic changes on glacial-interglacial timescales. Here we present a high-resolution aeolian dust record from the EPICA Dome C ice core in East Antarctica, which provides an undisturbed climate sequence over the last eight climatic cycles. We find that there is a significant correlation between dust flux and temperature records during glacial periods that is absent during interglacial periods. Our data suggests that dust flux is increasingly correlated with Antarctic temperature as climate becomes colder. We interpret this as progressive coupling of Antarctic and lower latitudes climate. Limited changes in glacial-interglacial atmospheric transport time Mahowald et al. (1999, doi:10.1029/1999JD900084), Jouzel et al. (2007, doi:10.1126/science.1141038), and Werner et al. (2002, doi:10.1029/2002JD002365) suggest that the sources and lifetime of dust are the major factors controlling the high glacial dust input. We propose that the observed ~25-fold increase in glacial dust flux over all eight glacial periods can be attributed to a strengthening of South American dust sources, together with a longer atmospheric dust particle life-time in the upper troposphere resulting from a reduced hydrological cycle during the ice ages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A chronology called EDML1 has been developed for the EPICA ice core from Dronning Maud Land (EDML). EDML1 is closely interlinked with EDC3, the new chronology for the EPICA ice core from Dome-C (EDC) through a stratigraphic match between EDML and EDC that consists of 322 volcanic match points over the last 128 ka. The EDC3 chronology comprises a glaciological model at EDC, which is constrained and later selectively tuned using primary dating information from EDC as well as from EDML, the latter being transferred using the tight stratigraphic link between the two cores. Finally, EDML1 was built by exporting EDC3 to EDML. For ages younger than 41 ka BP the new synchronized time scale EDML1/EDC3 is based on dated volcanic events and on a match to the Greenlandic ice core chronology GICC05 via 10Be and methane. The internal consistency between EDML1 and EDC3 is estimated to be typically ~6 years and always less than 450 years over the last 128 ka (always less than 130 years over the last 60 ka), which reflects an unprecedented synchrony of time scales. EDML1 ends at 150 ka BP (2417 m depth) because the match between EDML and EDC becomes ambiguous further down. This hints at a complex ice flow history for the deepest 350 m of the EDML ice core.

Relevância:

30.00% 30.00%

Publicador: