913 resultados para copper toxicosis
Resumo:
The addition of activated carbon particles (Darco-G, average size 4.3,μm) is shown to enhance the initial rate of extraction of copper in a Lewis cell by a mixture of α- and β-hydroxyoximes, when the rate of extraction is controlled by resistances in the organic phase. It is likely that the copper complex is adsorbed by carbon near the interace and partially released in the bulk. The enhancing effect of carbon vanishes when toluene is used as a diluent instead of heptane, presumably because toluene preferentially adsorbs on its surface.
Resumo:
A ternary metal-nucleotide complex, Na2[Cu(5’-IMP)2(im)o,8(H20)l,2(H20)2h]as~ 1be2e.n4 pHr2ep0a,r ed and its structure analyzed by X-ray diffraction (5’-IMP = inosine 5’-monophos hate; im = imidazole). The complex crystallizes in space group C222, with a = 8.733 (4) A, b = 23.213 (5) A, c = 21.489 (6) 1, and Z = 4. The structure was solved by the heavy-atom method and refined by full-matrix least-squares technique on the basis of 2008 observed reflections to a final R value of 0.087. Symmetry-related 5’-IMP anions coordinate in cis geometry through the N(7) atoms of the bases. The other cis positions of the coordination plane are statistically occupied by nitrogen atoms of disordered im groups and water oxygens with occupancies 0.4 and 0.6, respectively. Water oxygens in axial positions complete the octahedral coordination of Cu(I1). The complex is isostructural with C~S-[P~(S’-IMP),(NH~)~a] m”,o del proposed for Pt(I1) binding to DNA. The base binding observed in the present case is different from the typical ”phosphate only” binding shown from earlier studies on metal-nucleotide complexes containing various other ?r-aromatic amines.
Resumo:
In the present paper, the size and strain rate effects on ultra-thin < 100 >/{100} Cu nanowires at an initial temperature of 10 K have been discussed. Extensive molecular dynamics (MD) simulations have been performed using Embedded atom method (EAM) to investigate the structural behaviours and properties under high strain rate. Velocity-Verlet algorithm has been used to solve the equation of motions. Two different thermal loading cases have been considered: (i) Isothermal loading, in which Nose-Hoover thermostat is used to maintain the constant system temperature, and (ii) Adiabatic loading, i.e., without any thermostat. Five different wire cross-sections were considered ranging from 0.723 x 0.723 nm(2) to 2.169 x 2.169 nm(2) The strain rates used in the present study were 1 x 10(9) s(-1), 1 x 10(8) s(-1), and 1 x 10(7) s(-1). The effect of strain rate on the mechanical properties of copper nanowires was analysed, which shows that elastic properties are independent of thermal loading for a given strain rate and cross-sectional dimension of nanowire. It showed a decreasing yield stress and yield strain with decreasing strain rate for a given cross- section. Also, a decreasing yield stress and increasing yield strain were observed for a given strain rate with increasing cross-sectional area. Elastic modulus was found to be similar to 100 GPa, which was independent of processing temperature, strain rate, and size for a given initial temperature. Reorientation of < 100 >/{100} square cross-sectional copper nanowire into a series of stable ultra-thin Pentagon copper nanobridge structures with dia of similar to 1 nm at 10 K was observed under high strain rate tensile loading. The effect of isothermal and adiabatic loading on the formation of such pentagonal nanobridge structure has been discussed.
Resumo:
In the present investigation, experiments were conducted on a tribological couple-copper pin against steel plate-using an inclined pin-on-plate sliding tester to understand the role of surface texture and roughness parameters of the plate on the coefficient friction and transfer layer formation. Two surface characteristics of the steel plates-roughness and texture-were varied in the tests. It was observed that the transfer layer formation and the coefficient of friction along with its two components, namely, the adhesion and plowing, are controlled by the surface texture of the plate. The plowing component of friction was highest for the surface texture that promotes plane strain conditions while it was lowest for the texture that favors plane stress conditions at the interface. Dimensionless quantifiable roughness parameters were formulated to describe the degree of plowing and hence the plane strain/stress type deformations taking place at the asperity level.
Resumo:
Ternary metal complexes involving vitamin B6 with formulas [CO",(PN-H)](anCdI [OC)'(bpy)(PN)Cl]C10(.bpHy 0 = 2,2'-bipyridine, PN = neutral pyridoxine, PN-H = anionic pyridoxine) have been prepared for the first time and characterized by means of magnetic and spectroscopic measurements. The crystal structures of the compounds have also been determined. [CO(PN-H)](CcryIsOta,l)lize s in the space group P2,/c with a = 18.900 (3) A, b = 8.764 (1) A, c = 20.041 (2) A,p = 116.05 (l)', and Z = 4 and [Cu(bpy)(PN)C1]C104-H20in the space group Pi with a = 12.136 (5) A, b = 13.283 (4) A,c = 7.195 (2) A, a = 96.91 (Z)', 0 = 91.25 (3)', y = 71.63 (3)', and Z = 2. The structures were solved by the heavy-atom method and refined by least-squares techniques to R values of 0.080 and 0.042 for 3401 and 2094 independent reflections, respectively. Both structures consist of monomeric units. The geometry around Co(II1) is octahedral and around Cu(I1) is distorted square pyramidal. In [CO(PN-H)]t(wCo IoxOy~ge)n~s ,fro m phenolic and 4-(hydroxymethyl) groups of PN-H and two nitrogens from each of two bpy's form the coordination sphere. In [Cu(bpy)(PN)C1]C104.H20o ne PN and one bpy, with the same donor sites, act as bidentate chelates in the basal plane, with a chloride ion occupying the apical position. In both structures PN and PN-H exist in the tautomeric form wherein pyridine N is protonated and phenolic 0 is deprotonated. However, a novel feature of the cobalt compound is that PN-H is anionic due to the deprotonation of the 4-(hydroxymethyl) group. The packing in both structures is governed by hydrogen bonds, and in the copper compound partial stacking of bpy's at a distance of -3.55 also adds to the stability of the system. Infrared, NMR, and ligand field spectroscopic results and magnetic measurements are interpreted in light of the structures.
Resumo:
The nitrosation of monophenylamido substituted quadridentate Schiff base complexes of copper(II) are observed to adopt N-bonded isonitroso coordination whereas the phenylisocyanation of the corresponding mononitrosated quadridentate complexes are found to prefer O-bonded isonitroso coordination.
Resumo:
The mechanisms of action of Cu 2+ in improving the longevity of cut flowers and foliage have not been elucidated. Possible antimicrobial action of Cu 2+ against stem end and vase solution colonising bacteria was investigated using Cu 2+ treatments optimised for cut Acacia holosericea A. Cunn. ex G. Don foliage stems. These treatments were a 5h pulse with 2.2mM Cu 2+ or a 0.5mM Cu 2+ vase solution versus a deionised water (no Cu 2+) control. Bacterial growth over time was assessed by a standard plate count agar technique and with scanning electron microscopy. Cu 2+ treatments significantly extended the cut foliage vase life. However, they did not have sustained antibacterial activity against stem end or vase solution colonising bacteria. Also, regular recutting of 1-2cm from the stem ends did not substantially improve either cut stem water relations or longevity. The positive effects of Cu 2+ treatments were unaffected by the repeated stem end recutting. It was concluded that the primary mechanism of Cu 2+ was not antibacterial. Moreover, naturally growing vase solution and stem end microbial populations had relatively insignificant effects on cut A. holosericea vase life. Research into alternative mechanisms of Cu 2+ is required. © 2012 Elsevier B.V.
Resumo:
Inspired by high porosity, absorbency, wettability and hierarchical ordering on the micrometer and nanometer scale of cotton fabrics, a facile strategy is developed to coat visible light active metal nanostructures of copper and silver on cotton fabric substrates. The fabrication of nanostructured Ag and Cu onto interwoven threads of a cotton fabric by electroless deposition creates metal nanostructures that show a localized surface plasmon resonance (LSPR) effect. The micro/nanoscale hierarchical ordering of the cotton fabrics allows access to catalytically active sites to participate in heterogeneous catalysis with high efficiency. The ability of metals to absorb visible light through LSPR further enhances the catalytic reaction rates under photoexcitation conditions. Understanding the mode of electron transfer during visible light illumination in Ag@Cotton and Cu@Cotton through electrochemical measurements provides mechanistic evidence on the influence of light in promoting electron transfer during heterogeneous catalysis for the first time. The outcomes presented in this work will be helpful in designing new multifunctional fabrics with the ability to absorb visible light and thereby enhance light-activated catalytic processes.
Resumo:
The complexing ability of a new series of ligands, β-N-arylimine hydrazones, toward Ni (II) and Cu (II) ions has been studied. The isolated complexes are characterised on the basis of elemental analysis, spectroscopic methods and magnetic susceptibility measurements. The ligands are notentially bidentate in character coordinating to divalent metal ions through the N1 and N5 nitrogens. Square planar geometry of the metal ions is suggested on the basis of experimental evidence.
Resumo:
Es wird die Temperaturabhiingigkeit der CI35-Kernquadrupolresonanz in Natriumchlorat und Kupferchlorat im Temperature von 77 bis 300 °K untersucht. Es wird gezeigt, daß die Annahmen, die in der Theorie von Bayer gemacht werden, fur Chlorate gelten. Die Frequenz der Torsionsschwingungen der ClO3-Gruppe wird folglich mit dieser Theorie berechnet. Der berechnete Wert der Torsionsfrequenz stimmt gut mit vorhandenen Werten der Ramanspektroskopie überein.
Resumo:
Transfer from aluminum to copper metallization and decreasing feature size of integrated circuit devices generated a need for new diffusion barrier process. Copper metallization comprised entirely new process flow with new materials such as low-k insulators and etch stoppers, which made the diffusion barrier integration demanding. Atomic Layer Deposition technique was seen as one of the most promising techniques to deposit copper diffusion barrier for future devices. Atomic Layer Deposition technique was utilized to deposit titanium nitride, tungsten nitride, and tungsten nitride carbide diffusion barriers. Titanium nitride was deposited with a conventional process, and also with new in situ reduction process where titanium metal was used as a reducing agent. Tungsten nitride was deposited with a well-known process from tungsten hexafluoride and ammonia, but tungsten nitride carbide as a new material required a new process chemistry. In addition to material properties, the process integration for the copper metallization was studied making compatibility experiments on different surface materials. Based on these studies, titanium nitride and tungsten nitride processes were found to be incompatible with copper metal. However, tungsten nitride carbide film was compatible with copper and exhibited the most promising properties to be integrated for the copper metallization scheme. The process scale-up on 300 mm wafer comprised extensive film uniformity studies, which improved understanding of non-uniformity sources of the ALD growth and the process-specific requirements for the ALD reactor design. Based on these studies, it was discovered that the TiN process from titanium tetrachloride and ammonia required the reactor design of perpendicular flow for successful scale-up. The copper metallization scheme also includes process steps of the copper oxide reduction prior to the barrier deposition and the copper seed deposition prior to the copper metal deposition. Easy and simple copper oxide reduction process was developed, where the substrate was exposed gaseous reducing agent under vacuum and at elevated temperature. Because the reduction was observed efficient enough to reduce thick copper oxide film, the process was considered also as an alternative method to make the copper seed film via copper oxide reduction.
Resumo:
A disease outbreak investigation was conducted in western Queensland to investigate a rare suspected outbreak of pyrrolizidine alkaloid (PA) toxicosis in horses. Thirty five of 132 horses depastured on five properties on the Mitchell grass plains of western Queensland died in the first six months of 2010. Clinical–pathological findings were consistent with PA toxicosis. A local variety of Crotalaria medicaginea was the only hepatotoxic plant found growing on affected properties. Pathology reports and departure and arrival dates of two brood mares provided evidence of a pre wet season exposure period. All five affected properties experienced a very dry spring and early summer preceded by a large summer wet season. The outbreak was characterised as a point epidemic with a sudden peak of deaths in March followed by mortalities steadily declining until the end of June. The estimated morbidity (serum IGG > 50 IU/L) rate was 76%. Average crude mortality was 27% but higher in young horses (67%) and brood mares (44%). Logistic regression analysis showed that young horses and brood mares and those grazing denuded pastures in December were most strongly associated with dying whereas those fed hay and/or grain based supplements were less likely to die. This is the first detailed study of an outbreak of PA toxicosis in central western Queensland and the first to provide evidence that environmental determinants were associated with mortality, that the critical exposure period was towards the end of the dry season, that supplementary feeding is protective and that denuded pastures and the horses physiological protein requirement are risk factors.