982 resultados para control cerebral


Relevância:

30.00% 30.00%

Publicador:

Resumo:

El cerebro humano es probablemente uno de los sistemas más complejos a los que nos enfrentamos en la actualidad, si bien es también uno de los más fascinantes. Sin embargo, la compresión de cómo el cerebro organiza su actividad para llevar a cabo tareas complejas es un problema plagado de restos y obstáculos. En sus inicios la neuroimagen y la electrofisiología tenían como objetivo la identificación de regiones asociadas a activaciones relacionadas con tareas especificas, o con patrones locales que variaban en el tiempo dada cierta actividad. Sin embargo, actualmente existe un consenso acerca de que la actividad cerebral tiene un carácter temporal multiescala y espacialmente extendido, lo que lleva a considerar el cerebro como una gran red de áreas cerebrales coordinadas, cuyas conexiones funcionales son continuamente creadas y destruidas. Hasta hace poco, el énfasis de los estudios de la actividad cerebral funcional se han centrado en la identidad de los nodos particulares que forman estas redes, y en la caracterización de métricas de conectividad entre ellos: la hipótesis subyacente es que cada nodo, que es una representación mas bien aproximada de una región cerebral dada, ofrece a una única contribución al total de la red. Por tanto, la neuroimagen funcional integra los dos ingredientes básicos de la neuropsicología: la localización de la función cognitiva en módulos cerebrales especializados y el rol de las fibras de conexión en la integración de dichos módulos. Sin embargo, recientemente, la estructura y la función cerebral han empezado a ser investigadas mediante la Ciencia de la Redes, una interpretación mecánico-estadística de una antigua rama de las matemáticas: La teoría de grafos. La Ciencia de las Redes permite dotar a las redes funcionales de una gran cantidad de propiedades cuantitativas (robustez, centralidad, eficiencia, ...), y así enriquecer el conjunto de elementos que describen objetivamente la estructura y la función cerebral a disposición de los neurocientíficos. La conexión entre la Ciencia de las Redes y la Neurociencia ha aportado nuevos puntos de vista en la comprensión de la intrincada anatomía del cerebro, y de cómo las patrones de actividad cerebral se pueden sincronizar para generar las denominadas redes funcionales cerebrales, el principal objeto de estudio de esta Tesis Doctoral. Dentro de este contexto, la complejidad emerge como el puente entre las propiedades topológicas y dinámicas de los sistemas biológicos y, específicamente, en la relación entre la organización y la dinámica de las redes funcionales cerebrales. Esta Tesis Doctoral es, en términos generales, un estudio de cómo la actividad cerebral puede ser entendida como el resultado de una red de un sistema dinámico íntimamente relacionado con los procesos que ocurren en el cerebro. Con este fin, he realizado cinco estudios que tienen en cuenta ambos aspectos de dichas redes funcionales: el topológico y el dinámico. De esta manera, la Tesis está dividida en tres grandes partes: Introducción, Resultados y Discusión. En la primera parte, que comprende los Capítulos 1, 2 y 3, se hace un resumen de los conceptos más importantes de la Ciencia de las Redes relacionados al análisis de imágenes cerebrales. Concretamente, el Capitulo 1 está dedicado a introducir al lector en el mundo de la complejidad, en especial, a la complejidad topológica y dinámica de sistemas acoplados en red. El Capítulo 2 tiene como objetivo desarrollar los fundamentos biológicos, estructurales y funcionales del cerebro, cuando éste es interpretado como una red compleja. En el Capítulo 3, se resumen los objetivos esenciales y tareas que serán desarrolladas a lo largo de la segunda parte de la Tesis. La segunda parte es el núcleo de la Tesis, ya que contiene los resultados obtenidos a lo largo de los últimos cuatro años. Esta parte está dividida en cinco Capítulos, que contienen una versión detallada de las publicaciones llevadas a cabo durante esta Tesis. El Capítulo 4 está relacionado con la topología de las redes funcionales y, específicamente, con la detección y cuantificación de los nodos mas importantes: aquellos denominados “hubs” de la red. En el Capítulo 5 se muestra como las redes funcionales cerebrales pueden ser vistas no como una única red, sino más bien como una red-de-redes donde sus componentes tienen que coexistir en una situación de balance funcional. De esta forma, se investiga cómo los hemisferios cerebrales compiten para adquirir centralidad en la red-de-redes, y cómo esta interacción se mantiene (o no) cuando se introducen fallos deliberadamente en la red funcional. El Capítulo 6 va un paso mas allá al considerar las redes funcionales como sistemas vivos. En este Capítulo se muestra cómo al analizar la evolución de la topología de las redes, en vez de tratarlas como si estas fueran un sistema estático, podemos caracterizar mejor su estructura. Este hecho es especialmente relevante cuando se quiere tratar de encontrar diferencias entre grupos que desempeñan una tarea de memoria, en la que las redes funcionales tienen fuertes fluctuaciones. En el Capítulo 7 defino cómo crear redes parenclíticas a partir de bases de datos de actividad cerebral. Este nuevo tipo de redes, recientemente introducido para estudiar las anormalidades entre grupos de control y grupos anómalos, no ha sido implementado nunca en datos cerebrales y, en este Capítulo explico cómo hacerlo cuando se quiere evaluar la consistencia de la dinámica cerebral. Para concluir esta parte de la Tesis, el Capítulo 8 se centra en la relación entre las propiedades topológicas de los nodos dentro de una red y sus características dinámicas. Como mostraré más adelante, existe una relación entre ellas que revela que la posición de un nodo dentro una red está íntimamente correlacionada con sus propiedades dinámicas. Finalmente, la última parte de esta Tesis Doctoral está compuesta únicamente por el Capítulo 9, el cual contiene las conclusiones y perspectivas futuras que pueden surgir de los trabajos expuestos. En vista de todo lo anterior, espero que esta Tesis aporte una perspectiva complementaria sobre uno de los más extraordinarios sistemas complejos frente a los que nos encontramos: El cerebro humano. ABSTRACT The human brain is probably one of the most complex systems we are facing, thus being a timely and fascinating object of study. Characterizing how the brain organizes its activity to carry out complex tasks is highly non-trivial. While early neuroimaging and electrophysiological studies typically aimed at identifying patches of task-specific activations or local time-varying patterns of activity, there has now been consensus that task-related brain activity has a temporally multiscale, spatially extended character, as networks of coordinated brain areas are continuously formed and destroyed. Up until recently, though, the emphasis of functional brain activity studies has been on the identity of the particular nodes forming these networks, and on the characterization of connectivity metrics between them, the underlying covert hypothesis being that each node, constituting a coarse-grained representation of a given brain region, provides a unique contribution to the whole. Thus, functional neuroimaging initially integrated the two basic ingredients of early neuropsychology: localization of cognitive function into specialized brain modules and the role of connection fibres in the integration of various modules. Lately, brain structure and function have started being investigated using Network Science, a statistical mechanics understanding of an old branch of pure mathematics: graph theory. Network Science allows endowing networks with a great number of quantitative properties, thus vastly enriching the set of objective descriptors of brain structure and function at neuroscientists’ disposal. The link between Network Science and Neuroscience has shed light about how the entangled anatomy of the brain is, and how cortical activations may synchronize to generate the so-called functional brain networks, the principal object under study along this PhD Thesis. Within this context, complexity appears to be the bridge between the topological and dynamical properties of biological systems and, more specifically, the interplay between the organization and dynamics of functional brain networks. This PhD Thesis is, in general terms, a study of how cortical activations can be understood as the output of a network of dynamical systems that are intimately related with the processes occurring in the brain. In order to do that, I performed five studies that encompass both the topological and the dynamical aspects of such functional brain networks. In this way, the Thesis is divided into three major parts: Introduction, Results and Discussion. In the first part, comprising Chapters 1, 2 and 3, I make an overview of the main concepts of Network Science related to the analysis of brain imaging. More specifically, Chapter 1 is devoted to introducing the reader to the world of complexity, specially to the topological and dynamical complexity of networked systems. Chapter 2 aims to develop the biological, topological and functional fundamentals of the brain when it is seen as a complex network. Next, Chapter 3 summarizes the main objectives and tasks that will be developed along the forthcoming Chapters. The second part of the Thesis is, in turn, its core, since it contains the results obtained along these last four years. This part is divided into five Chapters, containing a detailed version of the publications carried out during the Thesis. Chapter 4 is related to the topology of functional networks and, more specifically, to the detection and quantification of the leading nodes of the network: the hubs. In Chapter 5 I will show that functional brain networks can be viewed not as a single network, but as a network-of-networks, where its components have to co-exist in a trade-off situation. In this way, I investigate how the brain hemispheres compete for acquiring the centrality of the network-of-networks and how this interplay is maintained (or not) when failures are introduced in the functional network. Chapter 6 goes one step beyond by considering functional networks as living systems. In this Chapter I show how analyzing the evolution of the network topology instead of treating it as a static system allows to better characterize functional networks. This fact is especially relevant when trying to find differences between groups performing certain memory tasks, where functional networks have strong fluctuations. In Chapter 7 I define how to create parenclitic networks from brain imaging datasets. This new kind of networks, recently introduced to study abnormalities between control and anomalous groups, have not been implemented with brain datasets and I explain in this Chapter how to do it when evaluating the consistency of brain dynamics. To conclude with this part of the Thesis, Chapter 8 is devoted to the interplay between the topological properties of the nodes within a network and their dynamical features. As I will show, there is an interplay between them which reveals that the position of a node in a network is intimately related with its dynamical properties. Finally, the last part of this PhD Thesis is composed only by Chapter 9, which contains the conclusions and future perspectives that may arise from the exposed results. In view of all, I hope that reading this Thesis will give a complementary perspective of one of the most extraordinary complex systems: The human brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metallothioneins (MTs) are a family of metal binding proteins that have been proposed to participate in a cellular defense against zinc toxicity and free radicals. In the present study, we investigated whether increased expression of MT in MT-1 isoform-overexpressing transgenic mice (MT-TG) affords protection against mild focal cerebral ischemia and reperfusion. Transient focal ischemia was induced in control (wild type) and MT-TG mice by occluding the right middle cerebral artery for 45 min. Upon reperfusion, cerebral edema slowly developed and peaked at 24 hr as shown by T2-weighted MRI. The volume of affected tissue was on the average 42% smaller in MT-TG mice compared with control mice at 6, 9, 24, and 72 hr and 14 days postreperfusion (P < 0.01). In addition, functional studies showed that 3 weeks after reperfusion MT-TG mice showed a significantly better motor performance compared with control mice (P = 0.011). Although cortical baseline levels of MT-1 mRNA were similar in control and MT-TG mice, there was an increase in MT-1 mRNA levels in the ischemic cortex of MT-TG mice to 7.5 times baseline levels compared with an increase to 2.3 times baseline levels in control mice 24 hr after reperfusion. In addition, MT-TG mice showed an increased MT immunoreactivity in astrocytes, vascular endothelial cells, and neurons 24 hr after reperfusion whereas in control mice MT immunoreactivity was restricted mainly to astrocytes and decreased in the infarcted tissue. These results provide evidence that increased expression of MT-1 protects against focal cerebral ischemia and reperfusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immune mechanisms contribute to cerebral ischemic injury. Therapeutic immunosuppressive options are limited due to systemic side effects. We attempted to achieve immunosuppression in the brain through oral tolerance to myelin basic protein (MBP). Lewis rats were fed low-dose bovine MBP or ovalbumin (1 mg, five times) before 3 h of middle cerebral artery occlusion (MCAO). A third group of animals was sensitized to MBP but did not survive the post-stroke period. Infarct size at 24 and 96 h after ischemia was significantly less in tolerized animals. Tolerance to MBP was confirmed in vivo by a decrease in delayed-type hypersensitivity to MBP. Systemic immune responses, characterized in vitro by spleen cell proliferation to Con A, lipopolysaccharide, and MBP, again confirmed antigen-specific immunologic tolerance. Immunohistochemistry revealed transforming growth factor β1 production by T cells in the brains of tolerized but not control animals. Systemic transforming growth factor β1 levels were equivalent in both groups. Corticosterone levels 24 h after surgery were elevated in all sham-operated animals and ischemic control animals but not in ischemic tolerized animals. These results demonstrate that antigen-specific modulation of the immune response decreases infarct size after focal cerebral ischemia and that sensitization to the same antigen may actually worsen outcome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate and automated methods for measuring the thickness of human cerebral cortex could provide powerful tools for diagnosing and studying a variety of neurodegenerative and psychiatric disorders. Manual methods for estimating cortical thickness from neuroimaging data are labor intensive, requiring several days of effort by a trained anatomist. Furthermore, the highly folded nature of the cortex is problematic for manual techniques, frequently resulting in measurement errors in regions in which the cortical surface is not perpendicular to any of the cardinal axes. As a consequence, it has been impractical to obtain accurate thickness estimates for the entire cortex in individual subjects, or group statistics for patient or control populations. Here, we present an automated method for accurately measuring the thickness of the cerebral cortex across the entire brain and for generating cross-subject statistics in a coordinate system based on cortical anatomy. The intersubject standard deviation of the thickness measures is shown to be less than 0.5 mm, implying the ability to detect focal atrophy in small populations or even individual subjects. The reliability and accuracy of this new method are assessed by within-subject test–retest studies, as well as by comparison of cross-subject regional thickness measures with published values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The central nervous system (CNS) effects of mental stress in patients with coronary artery disease (CAD) are unexplored. The present study used positron emission tomography (PET) to measure brain correlates of mental stress induced by an arithmetic serial subtraction task in CAD and healthy subjects. Mental stress resulted in hyperactivation in CAD patients compared with healthy subjects in several brain areas including the left parietal cortex [angular gyrus/parallel sulcus (area 39)], left anterior cingulate (area 32), right visual association cortex (area 18), left fusiform gyrus, and cerebellum. These same regions were activated within the CAD patient group during mental stress versus control conditions. In the group of healthy subjects, activation was significant only in the left inferior frontal gyrus during mental stress compared with counting control. Decreases in blood flow also were produced by mental stress in CAD versus healthy subjects in right thalamus (lateral dorsal, lateral posterior), right superior frontal gyrus (areas 32, 24, and 10), and right middle temporal gyrus (area 21) (in the region of the auditory association cortex). Of particular interest, a subgroup of CAD patients that developed painless myocardial ischemia during mental stress had hyperactivation in the left hippocampus and inferior parietal lobule (area 40), left middle (area 10) and superior frontal gyrus (area 8), temporal pole, and visual association cortex (area 18), and a concomitant decrease in activation observed in the anterior cingulate bilaterally, right middle and superior frontal gyri, and right visual association cortex (area 18) compared with CAD patients without myocardial ischemia. These findings demonstrate an exaggerated cerebral cortical response and exaggerated asymmetry to mental stress in individuals with CAD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are defined medullary, mesencephalic, hypothalamic, and thalamic functions in regulation of respiration, but knowledge of cortical control and the elements subserving the consciousness of breathlessness and air hunger is limited. In nine young adults, air hunger was produced acutely by CO2 inhalation. Comparisons were made with inhalation of a N2/O2 gas mixture with the same apparatus, and also with paced breathing, and with eyes closed rest. A network of activations in pons, midbrain (mesencephalic tegmentum, parabrachial nucleus, and periaqueductal gray), hypothalamus, limbic and paralimbic areas (amygdala and periamygdalar region) cingulate, parahippocampal and fusiform gyrus, and anterior insula were seen along with caudate nuclei and pulvinar activations. Strong deactivations were seen in dorsal cingulate, posterior cingulate, and prefrontal cortex. The striking response of limbic and paralimbic regions points to these structures having a singular role in the affective sequelae entrained by disturbance of basic respiratory control whereby a process of which we are normally unaware becomes a salient element of consciousness. These activations and deactivations include phylogenetically ancient areas of allocortex and transitional cortex that together with the amygdalar/periamygdalar region may subserve functions of emotional representation and regulation of breathing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relative cerebral glucose metabolism was examined with positron-emission tomography (PET) as a measure of neuronal activation during performance of the classically conditioned eyeblink response in 12 young adult subjects. Each subject received three sessions: (i) a control session with PET scan in which unpaired presentations of the tone conditioned stimulus and corneal airpuff unconditioned stimulus were administered, (ii) a paired training session to allow associative learning to occur, and (iii) a paired test session with PET scan. Brain regions exhibiting learning-related activation were identified as those areas that showed significant differences in glucose metabolism between the unpaired control condition and well-trained state in the 9 subjects who met the learning criterion. Areas showing significant activation included bilateral sites in the inferior cerebellar cortex/deep nuclei, anterior cerebellar vermis, contralateral cerebellar cortex and pontine tegmentum, ipsilateral inferior thalamus/red nucleus, ipsilateral hippocampal formation, ipsilateral lateral temporal cortex, and bilateral ventral striatum. Among all subjects, including those who did not meet the learning criterion, metabolic changes in ipsilateral cerebellar nuclei, bilateral cerebellar cortex, anterior vermis, contralateral pontine tegmentum, ipsilateral hippocampal formation, and bilateral striatum correlated with degree of learning. The localization to cerebellum and its associated brainstem circuitry is consistent with neurobiological studies in the rabbit model of eyeblink classical conditioning and neuropsychological studies in brain-damaged humans. In addition, these data support a role for the hippocampus in conditioning and suggest that the ventral striatum may also be involved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stroke is a prevalent disorder with immense socioeconomic impact. A variety of chronic neurological deficits result from stroke. In particular, sensorimotor deficits are a significant barrier to achieving post-stroke independence. Unfortunately, the majority of pre-clinical studies that show improved outcomes in animal stroke models have failed in clinical trials. Pre-clinical studies using non-human primate (NHP) stroke models prior to initiating human trials are a potential step to improving translation from animal studies to clinical trials. Robotic assessment tools represent a quantitative, reliable, and reproducible means to assess reaching behaviour following stroke in both humans and NHPs. We investigated the use of robotic technology to assess sensorimotor impairments in NHPs following middle cerebral artery occlusion (MCAO). Two cynomolgus macaques underwent transient MCAO for 90 minutes. Approximately 1.5 years following the procedure these NHPs and two non-stroke control monkeys were trained in a reaching task with both arms in the KINARM exoskeleton. This robot permits elbow and shoulder movements in the horizontal plane. The task required NHPs to make reaching movements from a centrally positioned start target to 1 of 8 peripheral targets uniformly distributed around the first target. We analyzed four movement parameters: reaction time, movement time (MT), initial direction error (IDE), and number of speed maxima to characterize sensorimotor deficiencies. We hypothesized reduced performance in these attributes during a neurobehavioural task with the paretic limb of NHPs following MCAO compared to controls. Reaching movements in the non-affected limbs of control and experimental NHPs showed bell-shaped velocity profiles. In contrast, the reaching movements with the affected limbs were highly variable. We found distinctive patterns in MT, IDE, and number of speed peaks between control and experimental monkeys and between limbs of NHPs with MCAO. NHPs with MCAO demonstrated more speed peaks, longer MTs, and greater IDE in their paretic limb compared to controls. These initial results qualitatively match human stroke subjects’ performance, suggesting that robotic neurobehavioural assessment in NHPs with stroke is feasible and could have translational relevance in subsequent human studies. Further studies will be necessary to replicate and expand on these preliminary findings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different features of sensorimotor function and behaviour were studied in murine cerebral malaria (CM) and malaria without cerebral involvement (non-CM) applying the primary screen of the SHIRPA protocol. Histopathological analysis of distinct brain regions was performed and the relative size of haemorrhages and plugging of blood cells to brain vasculature was analysed. Animals suffering from CM develop a wide range of behavioural and functional alterations in the progressive course of the disease with a statistically significant impairment in all functional categories assessed 36 h prior to death when compared with control animals. Early functional indicators of cerebral phenotype are impairments in reflex and sensory system and in neuropsychiatric state. Deterioration in function is paralleled by the degree of histopathological changes with a statistically significant correlation between the SHIRPA score of CM animals and the mean size of brain haemorrhage. Furthermore, image analysis yielded that the relative area of the brain lesions was significantly larger in the forebrain and brainstem compared with the other regions of interest. Our results indicate that assessment of sensory and motor tasks by the SHIRPA primary screen is appropriate for the early in vivo discrimination of cerebral involvement in experimental murine malaria. Our findings also suggest a correlation between the degree of functional impairment and the size of the brain lesions as indicated by parenchymal haemorrhage. Applying the SHIRPA protocol in the functional characterization of animals suffering from CM might prove useful in the preclinical assessment of new antimalarial and potential neuroprotective therapies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IMPORTANCE Obesity is a risk factor for deep vein thrombosis of the leg and pulmonary embolism. To date, however, whether obesity is associated with adult cerebral venous thrombosis (CVT) has not been assessed. OBJECTIVE To assess whether obesity is a risk factor for CVT. DESIGN, SETTING, AND PARTICIPANTS A case-control study was performed in consecutive adult patients with CVT admitted from July 1, 2006 (Amsterdam), and October 1, 2009 (Berne), through December 31, 2014, to the Academic Medical Center in Amsterdam, the Netherlands, or Inselspital University Hospital in Berne, Switzerland. The control group was composed of individuals from the control population of the Multiple Environmental and Genetic Assessment of Risk Factors for Venous Thrombosis study, which was a large Dutch case-control study performed from March 1, 1999, to September 31, 2004, and in which risk factors for deep vein thrombosis and pulmonary embolism were assessed. Data analysis was performed from January 2 to July 12, 2015. MAIN OUTCOMES AND MEASURES Obesity was determined by body mass index (BMI). A BMI of 30 or greater was considered to indicate obesity, and a BMI of 25 to 29.99 was considered to indicate overweight. A multiple imputation procedure was used for missing data. We adjusted for sex, age, history of cancer, ethnicity, smoking status, and oral contraceptive use. Individuals with normal weight (BMI <25) were the reference category. RESULTS The study included 186 cases and 6134 controls. Cases were younger (median age, 40 vs 48 years), more often female (133 [71.5%] vs 3220 [52.5%]), more often used oral contraceptives (97 [72.9%] vs 758 [23.5%] of women), and more frequently had a history of cancer (17 [9.1%] vs 235 [3.8%]) compared with controls. Obesity (BMI ≥30) was associated with an increased risk of CVT (adjusted odds ratio [OR], 2.63; 95% CI, 1.53-4.54). Stratification by sex revealed a strong association between CVT and obesity in women (adjusted OR, 3.50; 95% CI, 2.00-6.14) but not in men (adjusted OR, 1.16; 95% CI, 0.25-5.30). Further stratification revealed that, in women who used oral contraceptives, overweight and obesity were associated with an increased risk of CVT in a dose-dependent manner (BMI 25.0-29.9: adjusted OR, 11.87; 95% CI, 5.94-23.74; BMI ≥30: adjusted OR, 29.26; 95% CI, 13.47-63.60). No association was found in women who did not use oral contraceptives. CONCLUSIONS AND RELEVANCE Obesity is a strong risk factor for CVT in women who use oral contraceptives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lesch–Nyhan disease (LND) is a rare X-linked recessive genetic disorder caused by a deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT) enzyme. The classic clinical condition is characterized by cognitive impairment, hypotonia at rest, choreoathetosis, hyperuricaemia and the hallmark symptom of severe and involuntary self-mutilation. We describe a man with LND who was initially thought to have suffered from a dyskinetic cerebral palsy after an uncomplicated inguinal herniorrhaphy under general anaesthesia at 5 1/2 months of age. In the absence of overt self-injurious behaviour, the diagnosis was not considered for nearly two decades. The diagnosis of LND was established at 20 years of age through clinical review, biochemical examinations and molecular analysis. HPRT haemolysate activity was 7.6% of the normal control, suggesting that he had a milder variant of the disease. Mutation analysis of the HPRT gene revealed a novel missense mutation, c.449T > G in exon 6 (p.V150G). Cascade testing of family members revealed that the mother was heterozygous for the mutation but two siblings (a brother and a sister) did not carry the sequence mutation. Whether the onset of neurological abnormalities in this particular case can be attributed to the general anaesthesia is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To investigate the importance of the connection between being able to speak and the emergence of phonological awareness abilities, the performance of children with cerebral palsy (five speakers and six non-speakers) was assessed at syllable, onset-rime, and phoneme levels. The children were matched with control groups of children for non-verbal intelligence. No group differences were found for the identification of syllables, reading non-words, or judging spoken rhyme. The children with cerebral palsy who could speak, however, performed better than the children with cerebral palsy who could not speak and the control group of children without disabilities, judging written words for rhyme. The children with cerebral palsy who could not speak performed poorly in comparison to those who could speak ( but not the control group of children) when segmenting syllables and on the phoneme manipulation task. The findings suggest that non-speaking children with cerebral palsy have phonological awareness performance that varies according to the mental processing demands of the task. The ability to speak facilitates performance when phonological awareness tasks ( written rhyme judgment, syllable segmentation, and phoneme manipulation) require the use of an articulatory loop.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Everyday human behaviour relies on our ability to predict outcomes on the basis of moment by moment information. Long-range neural phase synchronization has been hypothesized as a mechanism by which ‘predictions’ can exert an effect on the processing of incoming sensory events. Using magnetoencephalography (MEG) we have studied the relationship between the modulation of phase synchronization in a cerebral network of areas involved in visual target processing and the predictability of target occurrence. Our results reveal a striking increase in the modulation of phase synchronization associated with an increased probability of target occurrence. These observations are consistent with the hypothesis that long-range phase synchronization plays a critical functional role in humans' ability to effectively employ predictive heuristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Slow abdominal breathing (SAB) stimulates baroreflex and generates respiratory sinus arrhythmia, changing cardiovascular, emotional and cerebral systems acute and chronically. However, although meditative practices have been receiving increasingly attention in the last years, there is no agreement on the neurophysiological changes underlying them, mainly because of the lack of topographical pieces of information. Purpose: We aimed to analyze the acute effect of SAB on brain activity, emotional and cardiovascular responses in untrained subjects in meditative techniques. Methods: Seventeen healthy adults’ men were assessed into two different sessions in a random and crossed order. Into experimental session, they breathed in 6 cycles/minute and in control session they kept breathing in normal rate, both for 20 minutes. xi Before, during, and after each session we assessed brain activity using electroencephalography (EEG), anxiety, mood, heart rate variability (HRV) and blood pressure. The sLORETA software was used to analyze EEG data for source localization of brain areas in which activity was changed. Results: The sLORETA showed that beta band frequency was reduced in frontal gyrus (P<0.01) and anterior cingulate cortex (P<0.05) both during and after SAB (P<0.05) compared to the moment before it. There was no change in brain activity in control session. Additionally, a two-way repeated measures ANOVA showed that there was no effect on anxiety (P>0.8) and mood (P>0.08). There were improvements in HRV (P<0.03), with increased RR interval and decreased HR after SAB, as well as increased SDNN, RMSSD, pNN50, low frequency, LF/HF ratio, and total power during it, with no changes in SBP and DBP. Conclusions: We conclude that SAB is able to change brain activity in areas responsible for emotional processing, even without behavioral changes. Furthermore, SAB improves HRV and does not change blood pressure in normotensive.