990 resultados para contrast factor
Resumo:
Objective: This study aimed to evaluate prospectively the influence and the evolution of periodontal disease (PD) in rheumatoid arthritis (RA) patients submitted to anti-tumor necrosis factor (TNF) therapy. Methods: Eighteen patients with RA (according to the American College of Rheumatology criteria) were assessed for PD before (BL) and after 6 months (6M) of anti-TNF treatment: 15 infliximab, 2 adalimumab, and 1 etanercept. Periodontal assessment included plaque and gingival bleeding indices, probing pocket depth, cementoenamel junction, and clinical attachment level. Rheumatologic evaluation was performed blinded to the dentist's assessment: demographic data, clinical manifestations, and disease activity (Disease Activity Score using 28 joints [DAS28], erythrocyte sedimentation rate [ESR], and C-reactive protein [CRP]). Results: The median age and disease duration of patients with RA were 50 years (25-71 y) and 94% were female. Periodontal disease was diagnosed in 8 patients (44.4%). Comparing BL to 6M, periodontal parameters in the entire group remained stable (P > 0.05) throughout the study (plaque and gingival bleeding indices, probing pocket depth, cementoenamel junction, and clinical attachment level), whereas an improvement in most analyzed RA parameters was observed in the same period: DAS28 (5.5 vs. 3.9, P = 0.02), ESR (21 vs. 12.5 mm/first hour, P = 0.07), and CRP (7.8 vs. 2.8 mg/dL, P = 0.25). Further analysis revealed that this improvement was restricted to the group of patients without PD (DAS28 [5.5 vs. 3.6, P = 0.04], ESR [23.0 vs. 11.5 mm/first hour, P = 0.008], and CRP [7.4 vs. 2.1, P = 0.01]). In contrast, patients with PD had lack of response, with no significant differences in disease activity parameters between BL and 6M: DAS28 (5.2 vs. 4.4, P = 0.11), ESR (17.0 vs. 21.0, P = 0.56), and CRP (9.0 vs. 8.8, P = 0.55). Conclusions: This study supports the notion that PD may affect TNF blocker efficacy in patients with RA. The possibility that a sustained gingival inflammatory state may hamper treatment response in this disease has high clinical interest because this is a treatable condition.
Resumo:
Evaluating the activity of the complement system under conditions of altered thyroid hormone levels might help elucidate the role of complement in triggering autoimmune processes. Here, we investigated alternative pathway (AP) activity in male Wistar rats (180 ± 10 g) after altering their thyroid hormone levels by treatment with triiodothyronine (T3), propylthiouracil (PTU) or thyroidectomy. T3 and thyroxine (T4) levels were determined by chemiluminescence assays. Hemolytic assays were performed to evaluate the lytic activity of the AP. Factor B activity was evaluated using factor B-deficient serum. An anti-human factor B antibody was used to measure factor B levels in serum by radial immunodiffusion. T3 measurements in thyroidectomized animals or animals treated with PTU demonstrated a significant reduction in hormone levels compared to control. The results showed a reduction in AP lytic activity in rats treated with increasing amounts of T3 (1, 10, or 50 µg). Factor B activity was also decreased in the sera of hyperthyroid rats treated with 1 to 50 µg T3. Additionally, treating rats with 25 µg T3 significantly increased factor B levels in their sera (P < 0.01). In contrast, increased factor B concentration and activity (32%) were observed in hypothyroid rats. We conclude that alterations in thyroid hormone levels affect the activity of the AP and factor B, which may in turn affect the roles of AP and factor B in antibody production.
Resumo:
Die Vegetation ist die wichtigste Quelle von organischen flüchtigen Verbindungen (auf Englisch volatile organic compounds,VOCs), die einen bemerkenswerten Einfluss auf der Chemie und Physik der Atmosphäre haben. VOCs beeinflussen die oxidative Kapazität der Atmosphäre und tragen zu der Bildung und zum Wachstum von sekundären organischen Aerosolen bei, welche einerseits eine Streuung und Reflektierung der Energie verursachen und andererseits sich an der Bildung und Entwicklung von Wolken beteiligen. Ziel dieser Arbeit war die Beschreibung und der Vergleich von VOC Emissionen aus Pflanzen aus zwei verschiedenen Ökosystemen: Mediterranes Ökosystem und Tropisches Ökosystem. Für diese Aufgabe wurden gewöhnliche Pflanzen von beiden Ökosystemen untersucht. Siebzehn Pflanzenspezies aus der Mittelmeergebiet, welches bekannt ist für seine Vielfalt an VOC emittierenden Pflanzen, wurden in die Untersuchungen einbezogen. Im Gegensatz zum mediterranen Ökosystem sind nur wenig Information verfügbar über VOC Emissionen aus Blättern tropischer Baumspezies. Vor diesem Hintergrund wurden sechsundzwanzig Baumspezies aus verschiedenen Ökotypen des Amazonasbeckens (Terra firme, Várzea und Igapó) wurden auf VOC Emissionen auf Blattebene mit einem Küvetten-System untersucht. Analysen von flüchtigen organischen Verbindungen wurden online mit PTR-MS und offline mittels Sammlung auf entsprechenden Adsorbern (Kartuschen) und nachfolgender GC-FID Analyse untersucht. Die höchsten Emissionen wurden für Isoprene beobachtete, gefolgt durch Monoterpene, Methanol und Aceton. Die meisten Mittelmeer Spezies emittierten eine hohe Vielfalt an Monoterpenspezies, hingegen zeigten nur fünf tropische Pflanzenspezies eine Monoterpene mit einen sehr konservativen Emissionsprofil (α-Pinen>Limonen>Sabinen >ß-Pinen). Mittelmeerpflanzen zeigten zusätzlich Emissionen von Sesquiterpenen, während bei der Pflanzen des Amazonas Beckens keine Sesquiterpenemissionen gefunden wurden. Dieser letzte Befund könnte aber auch durch eine niedrigere Sensitivität des Messsystems während der Arbeiten im Amazonasgebiet erklärt werden. Zusätzlich zu den Isoprenoidemissionen waren Methanolemissionen als Indikator für Wachtumsvorgänge sehr verbreitet in den meisten Pflanzenspezies aus tropischen und mediterranen Gebieten. Einige Pflanzenspezies beider Ökosystemen zeigten Acetonemissionen. rnrnVOC Emissionen werde durch eine große Vielfalt an biotischen und abiotischen Faktoren wie Lichtintensität, Temperatur, CO2 und Trockenheit beeinflusst. Ein anderer, öfter übersehener Faktor, der aber sehr wichtig ist für das Amazonas Becken, ist die regelmäßige Überflutung. In dieser Untersuchung wir fanden heraus, dass am Anfang einer Wurzelanoxie, die durch die Überflutung verursacht wurde, Ethanol und Acetaldehyd emittiert werden können, vor allem in Pflanzenspezies, die schlechter an eine unzureichende Sauerstoffversorgung bei Flutung adaptiert sind, wie z.B. Vatairea guianensis. Die Spezies Hevea spruceana, welche besser an Überflutung adaptiert ist, könnte möglicherweise der gebildete Ethanol sofort remetabolisieren ohne es zu emittieren. Nach einer langen Periode einer Überflutung konnte allerdings keine Emission mehr beobachtet werden, was auf eine vollständige Adaptation mit zunehmender Dauer schließen lässt. Als Reaktion auf den ausgelösten Stress können Isoprenoidemissionen ebenfalls kurzfristig nach einigen Tage an Überflutung zunehmen, fallen dann aber dann nach einer langen Periode zusammen mit der Photosynthese, Transpiration und stomatäre Leitfähigkeit deutlich ab.rnrnPflanzen Ontogenese ist anscheinend von Bedeutung für die Qualität und Quantität von VOC Emissionen. Aus diesem Grund wurden junge und erwachsene Blätter einiger gut charakterisierten Pflanzen Spezies aus dem Mittelmeerraum auf VOC Emissionen untersucht. Standard Emissionsfaktoren von Isopren waren niedriger in jungen Blättern als in erwachsene Blätter. Hingegen wurden höhere Monoterpen- und Sesquiterpenemissionen in jungen Blätter einiger Pflanzenspezies gefunden. Dieser Befund deutet auf eine potentielle Rolle dieser VOCs als Abwehrkomponenten gegen Pflanzenfresser oder Pathogene bei jungen Blätter hin. In einigen Fällen variierte auch die Zusammensetzung der Monoterpen- und Sesquiterpenspezies bei jungen und erwachsenen Blättern. Methanolemissionen waren, wie erwartet, höher in jungen Blättern als in ausgewachsenen Blättern, was mit der Demethylierung von Pectin bei der Zellwandreifung erklärt werden kann. Diese Befunde zu Änderungen der Emissionskapazität der Vegetation können für zukünftige Modellierungen herangezogen werden. rn
Resumo:
Severe hereditary coagulation factor XIII deficiency is a rare homozygous bleeding disorder affecting one person in every two million individuals. In contrast, heterozygous factor XIII deficiency is more common, but usually not associated with severe hemorrhage such as intracranial bleeding or hemarthrosis. In most cases, the disease is caused by F13A gene mutations. Causative mutations associated with the F13B gene are rarer.
Resumo:
Fas/CD95 is a critical mediator of cell death in many chronic and acute liver diseases and induces apoptosis in primary hepatocytes in vitro. In contrast, the proinflammatory cytokine tumor necrosis factor α (TNFα) fails to provoke cell death in isolated hepatocytes but has been implicated in hepatocyte apoptosis during liver diseases associated with chronic inflammation. Here we report that TNFα sensitizes primary murine hepatocytes cultured on collagen to Fas ligand (FasL)-induced apoptosis. This synergism is time-dependent and is specifically mediated by TNFα. Fas itself is essential for the sensitization, but neither Fas up-regulation nor endogenous FasL is responsible for this effect. Although FasL is shown to induce Bid-independent apoptosis in hepatocytes cultured on collagen, the sensitizing effect of TNFα is clearly dependent on Bid. Moreover, both c-Jun N-terminal kinase activation and Bim, another B cell lymphoma 2 homology domain 3 (BH3)-only protein, are crucial mediators of TNFα-induced apoptosis sensitization. Bim and Bid activate the mitochondrial amplification loop and induce cytochrome c release, a hallmark of type II apoptosis. The mechanism of TNFα-induced sensitization is supported by a mathematical model that correctly reproduces the biological findings. Finally, our results are physiologically relevant because TNFα also induces sensitivity to agonistic anti-Fas-induced liver damage. CONCLUSION: Our data suggest that TNFα can cooperate with FasL to induce hepatocyte apoptosis by activating the BH3-only proteins Bim and Bid.
Resumo:
The effect of prolonged electroporation-mediated human interleukin-10 (hIL-10) overexpression 24 hours before transplantation, combined with sequential human hepatocyte growth factor (HGF) overexpression into skeletal muscle on day 5, on rat lung allograft rejection was evaluated. Left lung allotransplantation was performed from Brown-Norway to Fischer-F344 rats. Gene transfer into skeletal muscle was enhanced by electroporation. Three groups were studied: group I animals (n = 5) received 2.5 μg pCIK-hIL-10 (hIL-10/CMV [cytomegalovirus] early promoter enhancer) on day -1 and 80 μg pCIK-HGF (HGF/CMV early promoter enhancer) on day 5. Group II animals (n = 4) received 2.5 μg pCIK-hIL-10 and pUbC-hIL-10 (hIL-10/pUbC promoter) on day -1. Control group III animals (n = 4) were treated by sham electroporation on days -1 and 5. All animals received daily nontherapeutic intraperitoneal dose of cyclosporin A (2.5 mg/kg) and were sacrificed on day 15. Graft oxygenation and allograft rejection were evaluated. Significant differences were found between study groups in graft oxygenation (Pao(2)) (P = .0028; group I vs. groups II and III, P < .01 each). Pao(2) was low in group II (31 ± 1 mm Hg) and in group III controls (34 ± 10 mm Hg), without statistically significant difference between these 2 groups (P = .54). In contrast, in group I, Pao(2) of recipients sequentially transduced with IL-10 and HGF plasmids was much improved, with 112 ± 39 mm Hg (vs. groups II and III; P < .01 each), paralleled by reduced vascular and bronchial rejection (group I vs. groups II and III, P < .021 each). Sequential overexpression of anti-inflammatory cytokine IL-10, followed by sequential and overlapping HGF overexpression on day 5, preserves lung function and reduces acute lung allograft rejection up to day 15 post transplant as compared to prolonged IL-10 overexpression alone.
Resumo:
The purpose of this study was to determine the influence of iodinated contrast agents on the formation of DNA double-strand breaks in vitro in lymphocytes and to verify these results in patients undergoing diagnostic computed tomography examinations. Blood samples were irradiated in vitro in the presence of iodinated X-ray contrast agent. Controls were irradiated without contrast agent. Fourteen patients were investigated using contrast-enhanced computed tomography (CT), and 14 other patients with unenhanced CT. Blood samples were taken prior to and 5 min and 1, 2 and 24 h after the CT examination. In these blood samples the average number of γH2Ax-foci per lymphocyte was enumerated by fluorescence microscopy. Statistical differences between foci numbers developed in the presence and absence of contrast agent were tested using an independent sample t-test. In vitro foci numbers after irradiation were significantly higher when contrast agent was present during irradiation. In vivo, γH2Ax-foci levels were 58% higher in patients undergoing contrast-enhanced CT compared with those undergoing unenhanced CT. In the presence of iodinated contrast agents DNA, damage is increased and the radiation dose is not the only factor affecting the amount of DNA damage. Individual patient characteristics and biological dosimetry applications, e.g. the analysis of γH2Ax-foci, have to be considered.
Resumo:
Alterations of the epidermal growth factor receptor (EGFR) can be observed in a significant subset of esophageal adenocarcinomas (EACs), and targeted therapy against EGFR may become an interesting approach for the treatment of these tumors. Mutations of KRAS, NRAS, BRAF, and phosphatidylinositol-3-kinase catalytic subunit (PIK3CA) and deregulation of PTEN expression influence the responsiveness against anti-EGFR therapy in colorectal carcinomas. We investigated the prevalence of these events in a collection of 117 primary resected EACs, correlated the findings with EGFR expression and amplification, and determined their clinicopathologic impact. KRAS mutations were detected in 4 (3%) of 117 tumors (3× G12D and 1 G12V mutation). One tumor had a PIK3CA E545K mutation. Neither NRAS nor BRAF mutations were detected. Sixteen (14%) of 117 cases were negative for PTEN expression, determined by immunohistochemistry. Loss of PTEN was observed predominantly in advanced tumor stages (P = .004). There was no association between PTEN and EGFR status. Loss of PTEN was associated with shorter overall and disease-free survival (P < .001 each) and also an independent prognostic factor in multivariate analysis (P = .015). EGFR status had no prognostic impact in this case collection. In summary, loss of PTEN can be detected in a significant subset of EAC and is associated with an aggressive phenotype. Therefore, PTEN may be useful as a prognostic biomarker. In contrast, mutations of RAS/RAF/PIK3CA appear only very rarely, if at all, in EAC. A possible predictive role of PTEN in anti-EGFR treatment warrants further investigations, whereas determination of RAS/RAF/PIK3CA mutations may only have a minor impact in this context.
Resumo:
Ethanolamine phosphoglycerol (EPG) is a protein modification attached exclusively to eukaryotic elongation factor 1A (eEF1A). In mammals and plants, EPG is linked to conserved glutamate residues located in eEF1A domains II and III, whereas in the unicellular eukaryote Trypanosoma brucei, only domain III is modified by a single EPG. A biosynthetic precursor of EPG and structural requirements for EPG attachment to T. brucei eEF1A have been reported, but nothing is known about the EPG modifying enzyme(s). By expressing human eEF1A in T. brucei, we now show that EPG attachment to eEF1A is evolutionarily conserved between T. brucei and Homo sapiens. In contrast, S. cerevisiae eEF1A, which has been shown to lack EPG is not modified in T. brucei. Furthermore, we show that eEF1A cannot functionally complement across species when using T. brucei and S. cerevisiae as model organisms. However, functional complementation in yeast can be obtained using eEF1A chimera containing domains II or III from other species. In contrast, yeast domain I is strictly required for functional complementation in S. cerevisiae.
Vascular endothelial growth factor-A and aldosterone: relevance to normal pregnancy and preeclampsia
Resumo:
Aldosterone levels are markedly elevated during normal pregnancy but fall even though volume contracts when preeclampsia occurs. The level of aldosterone in either condition cannot be explained solely by the activity of the renin-angiotensin II system. In normal gestation, vascular endothelial growth factor (VEGF) is thought to maintain vascular health, but its role in adrenal hormone production is unknown. We hypothesized that the role of VEGF in the adrenal gland is to maintain vascular health and regulate aldosterone production. Here, we demonstrate that supernatant of endothelial cells grown in the presence of VEGF enhanced aldosterone synthase activity in human adrenocortical cells. VEGF either alone or combined with angiotensin II increased aldosterone production in adrenal cells. These data suggest that endothelial cell-dependent and independent activation of aldosterone is regulated by VEGF. In contrast to angiotensin II, VEGF did not upregulate the steroidogenic acute regulatory protein. Consistent with this observation, angiotensin II stimulated both aldosterone and cortisol synthesis from progesterone, whereas VEGF stimulated selectively aldosterone production. In rats, overexpression of soluble fms-like tyrosine kinase-1, an endogenous VEGF inhibitor, led to adrenocortical capillary rarefaction and fall in aldosterone concentrations that correlated inversely with soluble fms-like tyrosine kinase-1 levels. These findings may explain why aldosterone increases so markedly during normal gestation and why preeclampsia, a condition characterized by high soluble fms-like tyrosine kinase-1, is associated with inappropriately low aldosterone levels in spite of relatively lower plasma volumes.
A metabolic enzyme as a primary virulence factor of Mycoplasma mycoides subsp. mycoides small colony
Resumo:
During evolution, pathogenic bacteria have developed complex interactions with their hosts. This has frequently involved the acquisition of virulence factors on pathogenicity islands, plasmids, transposons, or prophages, allowing them to colonize, survive, and replicate within the host. In contrast, Mycoplasma species, the smallest self-replicating organisms, have regressively evolved from gram-positive bacteria by reduction of the genome to a minimal size, with the consequence that they have economized their genetic resources. Hence, pathogenic Mycoplasma species lack typical primary virulence factors such as toxins, cytolysins, and invasins. Consequently, little is known how pathogenic Mycoplasma species cause host cell damage, inflammation, and disease. Here we identify a novel primary virulence determinant in Mycoplasma mycoides subsp. mycoides Small Colony (SC), which causes host cell injury. This virulence factor, released in significant amounts in the presence of glycerol in the growth medium, consists of toxic by-products such as H2O2 formed by l-alpha-glycerophosphate oxidase (GlpO), a membrane-located enzyme that is involved in the metabolism of glycerol. When embryonic calf nasal epithelial cells are infected with M. mycoides subsp. mycoides SC in the presence of physiological amounts of glycerol, H2O2 is released inside the cells prior to cell death. This process can be inhibited with monospecific anti-GlpO antibodies.
Resumo:
FGFRL1 is a novel member of the fibroblast growth factor receptor family that controls the formation of musculoskeletal tissues. Some vertebrates, including man, cow, dog, mouse, rat and chicken, possess a single copy the FGFRL1 gene. Teleostean fish have two copies, fgfrl1a and fgfrl1b, because they have undergone a whole genome duplication. Vertebrates belong to the chordates, a phylum that also includes the subphyla of the cephalochordates (e.g. Branchiostoma floridae) and urochordates (tunicates, e.g. Ciona intestinalis). We therefore investigated whether other chordates might also possess an FGFRL1 related gene. In fact, a homologous gene was found in B. floridae (amphioxus). The corresponding protein showed 60% sequence identity with the human protein and all sequence motifs identified in the vertebrate proteins were also conserved in amphioxus Fgfrl1. In contrast, the genome of the urochordate C. intestinalis and those from more distantly related invertebrates including the insect Drosophila melanogaster and the nematode Caenorhabditis elegans did not appear to contain any related sequences. Thus, the FGFRL1 gene might have evolved just before branching of the vertebrate lineage from the other chordates.
Resumo:
FGFRL1 is a novel member of the fibroblast growth factor receptor (FGFR) family. To investigate its expression during mammalian embryonic development, we have used the mouse system. Expression of Fgfrl1 is very low in mouse embryos of day 6 but steadily increases until birth. As demonstrated by in situ hybridization of 16-day-old embryos, the Fgfrl1 mRNA occurs in cartilaginous structures such as the primordia of bones and the permanent cartilage of the trachea, the ribs and the nose. In addition, some muscle types, including the muscles of the tongue and the diaphragm, express Fgfrl1 at relatively high level. In contrast, the heart and the skeletal muscles of the limbs, as well as many other organs (brain, lung, liver, kidney, gut) express Fgfrl1 only at basal level. It is conceivable that Fgfrl1 interacts with other Fgfrs, which are expressed in cartilage and muscle, to modulate FGF signaling.
Resumo:
Simple collagen-related peptides (CRPs) containing a repeat Gly-Pro-Hyp sequence are highly potent platelet agonists. Like collagen, they must exhibit tertiary (triple-helical) and quaternary (polymeric) structure to activate platelets. Platelet signaling events induced by the peptides are the same as most of those induced by collagen. The peptides do not recognize the alpha 2 beta 1 integrin. To identify the signaling receptor involved, we have evaluated the response to the CRP, Gly-Lys-Hyp(Gly-Pro-Hyp)10-Gly-Lys-Hyp-Gly of platelets with defined functional deficiencies. These studies exclude a primary recognition role for CD36, von Willebrand factor (vWF), or glycoprotein (GP) IIb/IIIa. Thus, both CD36 and vWF-deficient platelets exhibited normal aggregation, normal fibrinogen binding, and normal expression of CD62 and CD63, measured by flow cytometry, in response to the peptide, and there was normal expression of CD62 and CD63 on thrombasthenic platelets. In contrast, GPVI-deficient platelets were totally unresponsive to the peptide, indicating that this receptor recognizes the Gly-Pro-Hyp sequence in collagen. GPVI-deficient platelets showed some fibrinogen binding in response to collagen but failed to aggregate and to express CD62 and CD63. Collagen, but not CRP-XL, contains binding sites for alpha 2 beta 1. Therefore, it is possible that collagen still induces some signaling via alpha 2 beta 1, leading to activation of GPIIb/IIIa. Our findings are consistent with a two-site, two-step model of collagen interaction with platelets involving recognition of specific sequences in collagen by an adhesive receptor such as alpha 2 beta 1 to arrest platelets under flow and subsequent recognition of another specific collagen sequence by an activatory receptor, namely GPVI.
Resumo:
Insect bite hypersensitivity (IBH) is an allergic dermatitis of horses caused by IgE-mediated reactions to bites of insects of the genus Culicoides. IBH does not occur in Iceland due to the absence of Culicoides. However, Icelandic horses exported to mainland Europe as adults (1st generation) have a >/=50% incidence of developing IBH. In contrast, their progeny (2nd generation) has a <10% incidence of IBH. Here we show that peripheral blood mononuclear cells (PBMC) from Icelandic horses born in mainland Europe and belonging either to the IBH or healthy subgroup produce less interleukin (IL)-4 after polyclonal or allergen-specific stimulation when compared with counterparts from horses born in Iceland. We examined a role of IL-10 and transforming growth factor (TGF)-beta1 in down-regulation of IL-4 in healthy 2nd generation Icelandic horses. Supernatants of PBMC from 2nd generation healthy horses down-regulated the proportion of IL-4-producing cells and IL-4 production in stimulated cultures of PBMC from 1st generation IBH. This inhibition was mimicked by a combination of IL-10 and TGF-beta1 but not by the single cytokines. Cultures of stimulated PBMC of healthy 2nd generation horses produced a low level of IL-4, but IL-4 production was increased by anti-equine IL-10 and anti-human TGF-beta1. This shows for the first time that in horses, IL-10 and TGF-beta1 combined regulate IL-4 production in vitro. It is suggested that in this naturally occurring IgE-mediated allergy, IL-10 and TGF-beta1 have a role in the down-regulation of IL-4-induced allergen-specific Th2 cells, thereby reducing the incidence of IBH.