944 resultados para connected networks


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cache look up is an integral part of cooperative caching in ad hoc networks. In this paper, we discuss a cooperative caching architecture with a distributed cache look up protocol which relies on a virtual backbone for locating and accessing data within a cooperate cache. Our proposal consists of two phases: (i) formation of a virtual backbone and (ii) the cache look up phase. The nodes in a Connected Dominating Set (CDS) form the virtual backbone. The cache look up protocol makes use of the nodes in the virtual backbone for effective data dissemination and discovery. The idea in this scheme is to reduce the number of nodes involved in cache look up process, by constructing a CDS that contains a small number of nodes, still having full coverage of the network. We evaluated the effect of various parameter settings on the performance metrics such as message overhead, cache hit ratio and average query delay. Compared to the previous schemes the proposed scheme not only reduces message overhead, but also improves the cache hit ratio and reduces the average delay

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a context of urgent global socio-ecological challenges, the aim of this paper has been to explore the potential of localised and socially connected food systems. More specifically, through a multi-case study of two alternative food networks in the city of Cluj-Napoca, Romania, their contribution to a sustainable food paradigm has been explored. An important synergy within the networks is how good food is equated with peasant produce, but issues regarding quantity, delivery arrangement, power relations and inclusiveness constitute potential conflicts. Although challenged by unfavourable trends on national and EU levels, the networks are becoming more embedded horizontally, through an intrinsic focus on community in one case and through quality food stimulating good relations in the other case. The networks contribute to a sustainable food paradigm by promoting agroecology, by reclaiming socio-cultural factors of food provisioning and by being part of a (re)-peasantisation process. Exploring how these kinds of initiatives can emerge, be sustained and be developed is of relevance, especially considering their potential for improving the prospects of environmentally sustainable and socially just futures in Romania and beyond.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report explores how recurrent neural networks can be exploited for learning high-dimensional mappings. Since recurrent networks are as powerful as Turing machines, an interesting question is how recurrent networks can be used to simplify the problem of learning from examples. The main problem with learning high-dimensional functions is the curse of dimensionality which roughly states that the number of examples needed to learn a function increases exponentially with input dimension. This thesis proposes a way of avoiding this problem by using a recurrent network to decompose a high-dimensional function into many lower dimensional functions connected in a feedback loop.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Networks are ubiquitous in natural, technological and social systems. They are of increasing relevance for improved understanding and control of infectious diseases of plants, animals and humans, given the interconnectedness of today's world. Recent modelling work on disease development in complex networks shows: the relative rapidity of pathogen spread in scale-free compared with random networks, unless there is high local clustering; the theoretical absence of an epidemic threshold in scale-free networks of infinite size, which implies that diseases with low infection rates can spread in them, but the emergence of a threshold when realistic features are added to networks (e.g. finite size, household structure or deactivation of links); and the influence on epidemic dynamics of asymmetrical interactions. Models suggest that control of pathogens spreading in scale-free networks should focus on highly connected individuals rather than on mass random immunization. A growing number of empirical applications of network theory in human medicine and animal disease ecology confirm the potential of the approach, and suggest that network thinking could also benefit plant epidemiology and forest pathology, particularly in human-modified pathosystems linked by commercial transport of plant and disease propagules. Potential consequences for the study and management of plant and tree diseases are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we introduce two kinds of graphs: the generalized matching networks (GMNs) and the recursive generalized matching networks (RGMNs). The former generalize the hypercube-like networks (HLNs), while the latter include the generalized cubes and the star graphs. We prove that a GMN on a family of k-connected building graphs is -connected. We then prove that a GMN on a family of Hamiltonian-connected building graphs having at least three vertices each is Hamiltonian-connected. Our conclusions generalize some previously known results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In evaluating an interconnection network, it is indispensable to estimate the size of the maximal connected components of the underlying graph when the network begins to lose processors. Hypercube is one of the most popular interconnection networks. This article addresses the maximal connected components of an n -dimensional cube with faulty processors. We first prove that an n -cube with a set F of at most 2n - 3 failing processors has a component of size greater than or equal to2(n) - \F\ - 1. We then prove that an n -cube with a set F of at most 3n - 6 missing processors has a component of size greater than or equal to2(n) - \F\ - 2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

evaluating the fault tolerance of an interconnection network, it is essential to estimate the size of a maximal connected component of the network at the presence of faulty processors. Hypercube is one of the most popular interconnection networks. In this paper, we prove that for ngreater than or equal to6, an n-dimensional cube with a set F of at most (4n-10) failing processors has a component of size greater than or equal to2"-\F-3. This result demonstrates the superiority of hypercube in terms of the fault tolerance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to make a full evaluation of an interconnection network, it is essential to estimate the minimum size of a largest connected component of this network provided the faulty vertices in the network may break its connectedness. Star graphs are recognized as promising candidates for interconnection networks. This article addresses the size of a largest connected component of a faulty star graph. We prove that, in an n-star graph (n >= 3) with up to 2n-4 faulty vertices, all fault-free vertices but at most two form a connected component. Moreover, all fault-free vertices but exactly two form a connected component if and only if the set of all faulty vertices is equal to the neighbourhood of a pair of fault-free adjacent vertices. These results show that star graphs exhibit excellent fault-tolerant abilities in the sense that there exists a large functional network in a faulty star graph.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper illustrates how internal model control of nonlinear processes can be achieved by recurrent neural networks, e.g. fully connected Hopfield networks. It is shown that using results developed by Kambhampati et al. (1995), that once a recurrent network model of a nonlinear system has been produced, a controller can be produced which consists of the network comprising the inverse of the model and a filter. Thus, the network providing control for the nonlinear system does not require any training after it has been trained to model the nonlinear system. Stability and other issues of importance for nonlinear control systems are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current work discusses the compositional analysis of spectra that may be related to amorphous materials that lack discernible Lorentzian, Debye or Drude responses. We propose to model such response using a 3-dimensional random RLC network using a descriptor formulation which is converted into an input-output transfer function representation. A wavelet identification study of these networks is performed to infer the composition of the networks. It was concluded that wavelet filter banks enable a parsimonious representation of the dynamics in excited randomly connected RLC networks. Furthermore, chemometric classification using the proposed technique enables the discrimination of dielectric samples with different composition. The methodology is promising for the classification of amorphous dielectrics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The network paradigm has been highly influential in spatial analysis in the globalisation era. As economies across the world have become increasingly integrated, so-called global cities have come to play a growing role as central nodes in the networked global economy. The idea that a city’s position in global networks benefits its economic performance has resulted in a competitive policy focus on promoting the economic growth of cities by improving their network connectivity. However, in spite of the attention being given to boosting city connectivity little is known about whether this directly translates to improved city economic performance and, if so, how well connected a city needs to be in order to benefit from this. In this paper we test the relationship between network connectivity and economic performance between 2000 and 2008 for cities with over 500,000 inhabitants in Europe and the USA to inform European policy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper assesses the impact of the location and configuration of Battery Energy Storage Systems (BESS) on Low-Voltage (LV) feeders. BESS are now being deployed on LV networks by Distribution Network Operators (DNOs) as an alternative to conventional reinforcement (e.g. upgrading cables and transformers) in response to increased electricity demand from new technologies such as electric vehicles. By storing energy during periods of low demand and then releasing that energy at times of high demand, the peak demand of a given LV substation on the grid can be reduced therefore mitigating or at least delaying the need for replacement and upgrade. However, existing research into this application of BESS tends to evaluate the aggregated impact of such systems at the substation level and does not systematically consider the impact of the location and configuration of BESS on the voltage profiles, losses and utilisation within a given feeder. In this paper, four configurations of BESS are considered: single-phase, unlinked three-phase, linked three-phase without storage for phase-balancing only, and linked three-phase with storage. These four configurations are then assessed based on models of two real LV networks. In each case, the impact of the BESS is systematically evaluated at every node in the LV network using Matlab linked with OpenDSS. The location and configuration of a BESS is shown to be critical when seeking the best overall network impact or when considering specific impacts on voltage, losses, or utilisation separately. Furthermore, the paper also demonstrates that phase-balancing without energy storage can provide much of the gains on unbalanced networks compared to systems with energy storage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cellular neural networks (CNNs) have locally connected neurons. This characteristic makes CNNs adequate for hardware implementation and, consequently, for their employment on a variety of applications as real-time image processing and construction of efficient associative memories. Adjustments of CNN parameters is a complex problem involved in the configuration of CNN for associative memories. This paper reviews methods of associative memory design based on CNNs, and provides comparative performance analysis of these approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cortical bones, essential for mechanical support and structure in many animals, involve a large number of canals organized in intricate fashion. By using state-of-the art image analysis and computer graphics, the 3D reconstruction of a whole bone (phalange) of a young chicken was obtained and represented in terms of a complex network where each canal was associated to an edge and every confluence of three or more canals yielded a respective node. The representation of the bone canal structure as a complex network has allowed several methods to be applied in order to characterize and analyze the canal system organization and the robustness. First, the distribution of the node degrees (i.e. the number of canals connected to each node) confirmed previous indications that bone canal networks follow a power law, and therefore present some highly connected nodes (hubs). The bone network was also found to be partitioned into communities or modules, i.e. groups of nodes which are more intensely connected to one another than with the rest of the network. We verified that each community exhibited distinct topological properties that are possibly linked with their specific function. In order to better understand the organization of the bone network, its resilience to two types of failures (random attack and cascaded failures) was also quantified comparatively to randomized and regular counterparts. The results indicate that the modular structure improves the robustness of the bone network when compared to a regular network with the same average degree and number of nodes. The effects of disease processes (e. g., osteoporosis) and mutations in genes (e.g., BMP4) that occur at the molecular level can now be investigated at the mesoscopic level by using network based approaches.