962 resultados para complexes of Cu(II)
Resumo:
A new mononuclear Cu(II) complex, [CuL(ClO4)(2)] (1) has been derived from symmetrical tetradentate di-Schiff base, N,N'-bis-(1-pyridin-2-yl-ethylidene)-propane-1,3-diamine (L) and characterized by X-ray crystallography. The copper atom assumes a tetragonally distorted octahedral geometry with two perchlorate oxygens coordinated very weakly in the axial positions. Reactions of I with sodium azide, ammonium thiocyanate or sodium nitrite solution yielded compounds [CuL(N-3)]ClO4 (2), [CuL(SCN)ClO4 (3) or [CuL(NO2)]-ClO4 (4), respectively, all of which have been characterized by X-ray analysis. The geometries of the penta-coordinated copper(H) in complexes 2-4 are intermediate between square pyramid and trigonal bipyramid (tbp) having the Addition parameters (tau) 0.47, 0.45 and 0.58, respectively. In complex 4, the nitrite ion is coordinated as a chelating ligand and essentially both the 0 atoms of the nitrite occupy one axial site. Complex 1 shows distinct preference for the anion in the order SCN- > N-3(-) > NO2- in forming the complexes 24 when treated with a SCN-/N-3(-)/NO2- mixture. Electrochemical electron transfer study reveals (CuCuI)-Cu-II reduction in acetonitrile solution. (c) 2006 Elsevier B.V.. All rights reserved.
Resumo:
Two tridentate Schiff bases, HL1(6-amino-3-methyl-1-phenyl-4-azahex-2-en-1-one), and HL2 (6-atnino-3,6-dimethyl-1-phenyl-4-azahex-2-en-1-one) on reaction with Cu(II) perchlorate in the presence of triethyl amine yielded two new trinuclear copper(II) complexes, [(CuL1)(3)(mu(3)-OH)](ClO4)(2) (1) and [(CuL2)(3)(mu(3)-OH)](ClO4)(2) center dot 0.75H(2)O (2), whereas another tridentate ligand HL3 (7-amino-3-methyl-1-phenyl-4-azahept-2-en-1-one) underwent hydrolysis under the same reaction conditions to result in the formation of a mononuclear complex, [Cu(bn)(pn)ClO4] (3) [where bn = 1-benzoylacetonate and pn = 1,3-propanediamine]. All three complexes have been characterized by X-ray crystallography. For both 1 and 2 the cationic part is trinuclear with a [Cu3OH] core held by three carbonyl oxygen bridges between each pair of copper(II) atoms. The structure of 3 is a monomer with a chelating 1,3-propanediamine and a benzoyl acetone moiety. Magnetic measurements of I and 2 have been performed in the 2-300 K temperature range. The experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -J(S1S2 + S2S3 + S1S3), yielding as best fit parameters: J = -25.6 cm(-1), g = 2.21 for 1 and J = 11.2 cm(-1), g = 2.10 for 2. The EPR spectra at low temperature could be indicative of spin frustration in complex 1. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Three kinds of copper(II) azide complexes have been synthesised in excellent yields by reacting Cu(ClO4)(2) . 6H(2)O with N,N-bis(2-pyridylmethyl)amine (L-1); N-(2-pyridylmethyl)-N',N'-dimethylethylenediamine (L-2); and N-(2-pyridylmethyl)-N',N'-diethylethylenediamine (L-3), respectively, in the presence of slight excess of sodium azide. They are the monomeric Cu(L-1)(N-3)(ClO4) (1), the end-to-end diazido-bridged Cu-2(L-2)(2)(mu-1,3-N-3)(2)(ClO4)(2) (2) and the single azido-bridged (mu-1,3-) 1D chain [Cu(L-3)(mu-1,3-N-3)](n)(ClO4)(n) (3). The crystal and molecular structures of these complexes have been solved. The variable temperature magnetic moments of type 2 and type 3 complexes were studied. Temperature dependent susceptibility for 2 was fitted using the Bleaney-Bowers expression which led to the parameters J = -3.43 cm(-1) and R = 1 X 10(-5). The magnetic data for 3 were fitted to Baker's expression for S = 1/2 and the parameters obtained were J = 1.6 cm(-1) and R = 3.2 x 10(-4). Crystal data are as follows. Cu(L-1)(N-3)(ClO4): Chemical formula, C12H13ClN6O4Cu; crystal system, monoclinic; space group, P2(1)/c; a = 8.788(12), b = 13.045(15), c = 14.213(15) Angstrom; beta = 102.960(10)degrees; Z = 4. Cu(L-2)(mu-N-3)(ClO4): Chemical formula. C10H17ClN6O4Cu: crystal system, monoclinic; space group, P2(1)/c; a = 10.790(12), b = 8.568(9), c = 16.651(17) Angstrom; beta = 102.360(10)degrees; Z = 4. [Cu(L-3)(mu-N-3)](ClO4): Chemical formula, C12H21ClN6O4Cu; crystal system, monoclinic; space group, P2(1)/c; a = 12.331(14), b = 7.804(9), c = 18.64(2) Angstrom; beta = 103.405(10)degrees; Z = 4. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Two mononuclear and one dinuclear copper(II) complexes, containing neutral tetradentate NSSN type ligands, of formulation [Cu-II(L-1)Cl]ClO4 (1), [Cu-II(L-2)Cl]ClO4 (2) and [Cu-2(II)(L-3)(2)Cl-2](ClO4)(2) (3) were synthesized and isolated in pure form [where L-1 = 1,2-bis(2-pyridylmethylthio)ethane, L-2 = 1,3-bis(2-pyridylmethylthio)propane and L-3 = 1,4-bis(2-pyridylmethylthio)butane]. All these green colored copper(II) complexes were characterized by physicochemical and spectroscopic methods. The dinuclear copper(II) complex 3 changed to a colorless dinuclear copper(I) species of formula [Cu-2(1)(L-3)(2)](ClO4)(2),0.5H(2)O (4) in dimethylformamide even in the presence of air at ambient temperature, while complexes I and 2 showed no change under similar conditions. The solid-state structures of complexes 1, 2 and 4 were established by X-ray crystallography. The geometry about the copper in complexes 1 and 2 is trigonal bipyramidal whereas the coordination environment about the copper(I) in dinuclear complex 4 is distorted tetrahedral. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Two new hexa-coordinated mononuclear copper(II) complexes of two ligands L-1 and L-2 containing NSSN donor sets formulated as [Cu(L)(H2O)(2)](NO3)(2) [1a, L = 1,2-bis(2-pyridylmethylthio)ethane (L-1), 1b L = 1,3-bis(2-pyridyl-methylthio)propane (L-2)] were synthesized and characterized by physico-chemical and spectroscopic methods. In 1a the single crystal X-ray crystallography analysis showed a distorted octahedral geometry about copper(II) ion. The crystal packing evidences pairs of complexes arranged about a center of symmetry and connected through a H-bond occurring between aquo ligands and nitrate anions. On reaction with chloride and pseudohalides (N-3(-) and SCN-), in acetonitrile at ambient temperature. complexes 1 changed to monocationic penta-coordinated mononuclear copper(H) species formulated as [Cu(L)(Cl)]NO3 (2), [Cu(L)(N-3)]NO3 (3). and [Cu(L)(SCN)]NO3 (4). These copper(II) complexes have been isolated in pure form from the reaction mixtures and characterized by physico-chemical and spectroscopic tools. The solid-state structure of 2a, established by X-ray crystallography, shows a trigonal bipyramidal geometry about the metal ion with a trigonality index (tau) of 0.561. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Copper(l) complexes of 1:3 condensates of tris(2-aminoethyl)amine and p-X-benzaldehydes (X = K Cl, NMe2 and NO2) of the type [Cu(ligand)]ClO4 are synthesised. The X-ray crystal structures of the copper(l) complexes with X = K, Cl and NMe2 are determined. In these complexes copper(l) is found to have trigonal pyramidal N-4 coordination sphere with the apical N forming a longer bond (2.191-2.202 Angstrom) than the trigonal ones (2.003-2.026 Angstrom). The Cu(II/I) potentials in these complexes span a range of 0.71-0.90 V vs SCE increasing linearly with the resonance component of the Hammett sigma for the para substituent X. It is concluded that trigonal pyramidal geometry is destabilising for copper(II).
Resumo:
Two new reduced Schiff base ligands, [HL1 = 4-(2-[(pyridin-2-ylmethyl)-amino]-ethylimino)-pentan-2-one and HL2 =4-[2-(1-pyridin-2-yl-ethylamino)-ethylimino]-pentan-2-one] have been prepared by reduction of the corresponding tetradentate unsymmetrical schiff bases derived from 1.1: 1 condensation of 1,2-ethanediamine, acetylacetone and pyridine-2-carboxaldehyde/2-acetyl pyridine. Four complexes, [Ni(L-1)]ClO4 (1), [Cu(L-1)]ClO4 (2). [Ni(L-2)]ClO4 (3). and [Cu(L-2)]ClO4 (4) with these two reduced Schiff base ligands have been synthesized and structurally characterized by X-ray crystallography. The mono-negative ligands L-1 and L-2 are chelated in all four complexes through the four donor atoms to form square planar nickel(II) and copper(II) complexes Structures of 3 and 4 reveal that enantiomeric pairs are crystallized together with opposite chirality in the nitrogen and carbon atoms. The two Cu-II complexes (2 and 4) exhibit both irreversible reductive (Cu-II/Cu-II, E-pc. -1.00 and -1.04 V) and oxidative (Cu-II/CUII, E-pa, + 1.22 and + 1.17 V, respectively) responses in cyclic voltammetry. The electrochemically generated Cu-1 species for both the complexes are unstable and undergo disproportionation.
Resumo:
Copper(II) acetate reacts with benzene-1,2-dioxyacetic acid (bdoaH2) in aqueous media to give [Cu(bdoa)(H2O)2] (1). Complex 1 reacts with the N-donor ligands pyridine (py), ammonia and 1,10-phenanthroline (phen) to give [Cu(bdoa)(NH3)2]·H2O (2), [Cu(bdoa)(py)2]·H2O (3) and [Cu2(bdoa)(phen)4]bdoa·13H2O (4), respectively. The X-ray crystal structure of the dicopper(II,II) complex 4 shows each copper atom at the centre of a distorted trigonal bipyramid comprising four nitrogen atoms from two chelating phen ligands and a single oxygen atom from one of the carboxylate moieties of the bridging bdoa2− ligand. The cyclic voltammogram of 4 shows a single reversible wave for the Cu2+/Cu+ couple at E = + 115 mV (vs Ag/AgCl). Spectroscopic and magnetic data for the complexes are given.
Resumo:
Facile in situ Cu(II) mediated transformation of p-tolylsulfonyldithiocarbimate in conjunction with polypyridyl or phosphine ligands into corresponding carbamate and thiocarbamate led to the formation of new copper complexes with varying nuclearities and geometries, via C-S bond activation of the ligand within identical reaction systems.
Resumo:
The phenoxo-bridged dinuclear Cu-II complex [Cu2L2-(NCNCN)(2)] (1) and the dicyanamide-bridged molecular rectangle [Cu4L4{mu(1,5)-(NCNCN)(2)}]center dot(ClO4)(2)(H2O)(2) (2) were synthesized using the tridentate reduced Schiff-base ligand HL {2-[(2-dimethylamino-ethylamino) methyl] phenol}. The complexes were characterized by X-ray structural analyses and variable-temperature magnetic susceptibility measurements. Complex 2 was formed through the joining of the phenoxo-bridged dinuclear Cu2O2 cores of 1 via the mu(1,5)-bridging mode of dicyanamide. The structural properties of the Cu2O2 cores in two complexes are significantly different. The geometry of the copper ions is distorted trigonal bipyramid in 1 but is nearly square-pyramidal in 2. These differences have a marked effect on the magnetic properties of two compounds. Although both are antiferromagnetically coupled, the coupling constants (J = -185.2 and -500.9 cm(-1) for 1 and 2, respectively) differ considerably.
Resumo:
Reaction of 5,6-dihydro-5,6-epoxy-1,10-phenanthroline (L) with Cu(ClO(4))(2)center dot 6H(2)O in methanol in 3:1 M ratio at room temperature yields light green [CuL(3)](ClO(4))(2)center dot H(2)O (1). The X-ray crystal structure of the hemi acetonitrile solvate [CuL(3)](ClO(4))(2)center dot 0.5CH(3)CN has been determined which shows Jahn-Teller distortion in the CuN(6) core present in the cation [CuL(3)](2+). Complex 1 gives an axial EPR spectrum in acetonitrile-toluene glass with g(parallel to) = 2.262 (A(parallel to) = 169 x 10 (4) cm (1)) and g(perpendicular to) = 2.069. The Cu(II/I) potential in 1 in CH(2)Cl(2) at a glassy carbon electrode is 0.32 V versus NHE. This potential does not change with the addition of extra L in the medium implicating generation of a six-coordinate copper(I) species [CuL(3)](+) in solution. B3LYP/LanL2DZ calculations show that the six Cu-N bond distances in [CuL(3)](+) are 2.33, 2.25, 2.32, 2.25, 2.28 and 2.25 angstrom while the ideal Cu(I)-N bond length in a symmetric Cu(I)N(6) moiety is estimated as 2.25 angstrom. Reaction of L with Cu(CH(3)CN)(4)ClO(4) in dehydrated methanol at room temperature even in 4:1 M proportion yields [CuL(2)]ClO(4) (2). Its (1)H NMR spectrum indicates that the metal in [CuL(2)](+) is tetrahedral. The Cu(II/I) potential in 2 is found to be 0.68 V versus NHE in CH(2)Cl(2) at a glassy carbon electrode. In presence of excess L, 2 yields the cyclic voltammogram of 1. From (1)H NMR titration, the free energy of binding of L to [CuL(2)](+) to produce [CuL(3)](+) in CD(2)Cl(2) at 298 K is estimated as -11.7 (+/-0.2) kJ mol (1).
Resumo:
The synthesis of two new sodium perchlorate adducts (1:2 and 1:3) with copper(II) "ligand-complexes'' is reported. One adduct is trinuclear [(CuL(1))(2)NaClO(4)] (1) and the other is tetranuclear [(CuL(2))(3)Na]ClO(4)center dot EtOH (2). The ligands are the tetradentate di-Schiff base of 1,3-propanediamines and salicylaldehyde (H(2)L(1)) or 2-hydroxyacetophenone (H(2)L(2)). Both complexes have been characterized by X-ray single crystal structure analyses. In both structures, the sodium cation has a six-coordinate distorted octahedral environment being bonded to four oxygen atoms from two Schiff-base complexes in addition to a chelated perchlorate anion in 1 and to six oxygen atoms from three Schiff-base complexes in 2. We have carried out a DFT theoretical study (RI-B97-D/def2-SVP level of theory) to compute and compare the formation energies of 1:2 and 1:3 adducts. The DFT study reveals that the latter is more stabilized than the former. The X-ray crystal structure of 1 shows that the packing of the trinuclear unit is controlled by unconventional C-H center dot center dot center dot O H-bonds and Cu(2+)-pi non-covalent interactions. These interactions explain the formation of 1 which is a priori disfavored with respect to 2.
Resumo:
Three new homodinuclear complexes containing substituted phenolate-type ligands based on the N(5)O(2) donor (2-(N,N-Bis(2-pyridylmethyl)aminomethyl)-6-(N`,N`-(2-hydroxybenzyl)(2-pyridylmethyl))aminomethyl)-4-methylphenol (H(2)L-H) were synthesized and characterized by X-ray crystallography. Potentiometric titration studies in 70% (v/v) aqueous ethanol show that all three complexes exhibit a common {Cu(II)(mu-phenoxo)(mu-OH)Cu(II)(OH)} core in solution. Kinetic studies on the oxidation reaction of 3,5-di-tert-butylcatechol revealed that the catalytic activity of the metal complexes increases toward the ligand containing an electron-donating group. In addition, these complexes also carried out DNA cleavage by hydrolytic and oxidative pathways. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Nanoparticles of octakis[3-(3-amino-1,2,4-triazole)propyl]octasilsesquioxane (ATZ-SSQ) were tested as ligands, for transition-metal ions in aqueous solution with a special attention to sorption isotherms, ligand-metal interaction, and determination of metal ions in natural waters. The adsorption potential of the material ATZ-SSQ was compared with related [3(3-amino-1,2,4-triazole)propyl]silica gel (ATZ-SG). The adsorption was performed using a batchwise process and both organofunctionalized surfaces showed the ability to adsorb the metal ions from aqueous solution. The Langmuir model was used to simulate the sorption isotherms. The results suggest that the sorption of these metals on ATZ-SSQ and ATZ-SG occurs mainly by surface complexation. The equilibrium condition is reached at time lower than 3 min for ATZ-SSQ, while for ATZ-SG is only reached at time of 25 min. The maximum metal ion uptake values for ATZ-SSQ were higher than the corresponding values achieved with the ATZ-SG. In order to obtain more information on the ligand-metal interaction of the complexes on the surface of the ATZ-SSQ nanomaterial, ESR study with various degrees of copper loadings was carried out. The ATZ-SSQ was tested for the determination (in flow using a column technique) of the metal ions present in natural waters. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)