929 resultados para closed loop feed forward


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase diagram of a simple model with two patches of type A and ten patches of type B (2A10B) on the face centred cubic lattice has been calculated by simulations and theory. Assuming that there is no interaction between the B patches the behavior of the system can be described in terms of the ratio of the AB and AA interactions, r. Our results show that, similarly to what happens for related off-lattice and two-dimensional lattice models, the liquid-vapor phase equilibria exhibit reentrant behavior for some values of the interaction parameters. However, for the model studied here the liquid-vapor phase equilibria occur for values of r lower than 1/3, a threshold value which was previously thought to be universal for 2AnB models. In addition, the theory predicts that below r = 1/3 (and above a new condensation threshold which is < 1/3) the reentrant liquid-vapor equilibria are so extreme that it exhibits a closed loop with a lower critical point, a very unusual behavior in single-component systems. An order-disorder transition is also observed at higher densities than the liquid-vapor equilibria, which shows that the liquid-vapor reentrancy occurs in an equilibrium region of the phase diagram. These findings may have implications in the understanding of the condensation of dipolar hard spheres given the analogy between that system and the 2AnB models considered here. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4771591]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Automação e Electrónica Industrial

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the use of multidimensional scaling in the evaluation of fractional system. Several algorithms are analysed based on the time response of the closed loop system under the action of a reference step input signal. Two alternative performance indices, based on the time and frequency domains, are tested. The numerical experiments demonstrate the feasibility of the proposed visualization method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kinematic redundancy occurs when a manipulator possesses more degrees of freedom than those required to execute a given task. Several kinematic techniques for redundant manipulators control the gripper through the pseudo-inverse of the Jacobian, but lead to a kind of chaotic inner motion with unpredictable arm configurations. Such algorithms are not easy to adapt to optimization schemes and, moreover, often there are multiple optimization objectives that can conflict between them. Unlike single optimization, where one attempts to find the best solution, in multi-objective optimization there is no single solution that is optimum with respect to all indices. Therefore, trajectory planning of redundant robots remains an important area of research and more efficient optimization algorithms are needed. This paper presents a new technique to solve the inverse kinematics of redundant manipulators, using a multi-objective genetic algorithm. This scheme combines the closed-loop pseudo-inverse method with a multi-objective genetic algorithm to control the joint positions. Simulations for manipulators with three or four rotational joints, considering the optimization of two objectives in a workspace without and with obstacles are developed. The results reveal that it is possible to choose several solutions from the Pareto optimal front according to the importance of each individual objective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Thesis describes the application of automatic learning methods for a) the classification of organic and metabolic reactions, and b) the mapping of Potential Energy Surfaces(PES). The classification of reactions was approached with two distinct methodologies: a representation of chemical reactions based on NMR data, and a representation of chemical reactions from the reaction equation based on the physico-chemical and topological features of chemical bonds. NMR-based classification of photochemical and enzymatic reactions. Photochemical and metabolic reactions were classified by Kohonen Self-Organizing Maps (Kohonen SOMs) and Random Forests (RFs) taking as input the difference between the 1H NMR spectra of the products and the reactants. The development of such a representation can be applied in automatic analysis of changes in the 1H NMR spectrum of a mixture and their interpretation in terms of the chemical reactions taking place. Examples of possible applications are the monitoring of reaction processes, evaluation of the stability of chemicals, or even the interpretation of metabonomic data. A Kohonen SOM trained with a data set of metabolic reactions catalysed by transferases was able to correctly classify 75% of an independent test set in terms of the EC number subclass. Random Forests improved the correct predictions to 79%. With photochemical reactions classified into 7 groups, an independent test set was classified with 86-93% accuracy. The data set of photochemical reactions was also used to simulate mixtures with two reactions occurring simultaneously. Kohonen SOMs and Feed-Forward Neural Networks (FFNNs) were trained to classify the reactions occurring in a mixture based on the 1H NMR spectra of the products and reactants. Kohonen SOMs allowed the correct assignment of 53-63% of the mixtures (in a test set). Counter-Propagation Neural Networks (CPNNs) gave origin to similar results. The use of supervised learning techniques allowed an improvement in the results. They were improved to 77% of correct assignments when an ensemble of ten FFNNs were used and to 80% when Random Forests were used. This study was performed with NMR data simulated from the molecular structure by the SPINUS program. In the design of one test set, simulated data was combined with experimental data. The results support the proposal of linking databases of chemical reactions to experimental or simulated NMR data for automatic classification of reactions and mixtures of reactions. Genome-scale classification of enzymatic reactions from their reaction equation. The MOLMAP descriptor relies on a Kohonen SOM that defines types of bonds on the basis of their physico-chemical and topological properties. The MOLMAP descriptor of a molecule represents the types of bonds available in that molecule. The MOLMAP descriptor of a reaction is defined as the difference between the MOLMAPs of the products and the reactants, and numerically encodes the pattern of bonds that are broken, changed, and made during a chemical reaction. The automatic perception of chemical similarities between metabolic reactions is required for a variety of applications ranging from the computer validation of classification systems, genome-scale reconstruction (or comparison) of metabolic pathways, to the classification of enzymatic mechanisms. Catalytic functions of proteins are generally described by the EC numbers that are simultaneously employed as identifiers of reactions, enzymes, and enzyme genes, thus linking metabolic and genomic information. Different methods should be available to automatically compare metabolic reactions and for the automatic assignment of EC numbers to reactions still not officially classified. In this study, the genome-scale data set of enzymatic reactions available in the KEGG database was encoded by the MOLMAP descriptors, and was submitted to Kohonen SOMs to compare the resulting map with the official EC number classification, to explore the possibility of predicting EC numbers from the reaction equation, and to assess the internal consistency of the EC classification at the class level. A general agreement with the EC classification was observed, i.e. a relationship between the similarity of MOLMAPs and the similarity of EC numbers. At the same time, MOLMAPs were able to discriminate between EC sub-subclasses. EC numbers could be assigned at the class, subclass, and sub-subclass levels with accuracies up to 92%, 80%, and 70% for independent test sets. The correspondence between chemical similarity of metabolic reactions and their MOLMAP descriptors was applied to the identification of a number of reactions mapped into the same neuron but belonging to different EC classes, which demonstrated the ability of the MOLMAP/SOM approach to verify the internal consistency of classifications in databases of metabolic reactions. RFs were also used to assign the four levels of the EC hierarchy from the reaction equation. EC numbers were correctly assigned in 95%, 90%, 85% and 86% of the cases (for independent test sets) at the class, subclass, sub-subclass and full EC number level,respectively. Experiments for the classification of reactions from the main reactants and products were performed with RFs - EC numbers were assigned at the class, subclass and sub-subclass level with accuracies of 78%, 74% and 63%, respectively. In the course of the experiments with metabolic reactions we suggested that the MOLMAP / SOM concept could be extended to the representation of other levels of metabolic information such as metabolic pathways. Following the MOLMAP idea, the pattern of neurons activated by the reactions of a metabolic pathway is a representation of the reactions involved in that pathway - a descriptor of the metabolic pathway. This reasoning enabled the comparison of different pathways, the automatic classification of pathways, and a classification of organisms based on their biochemical machinery. The three levels of classification (from bonds to metabolic pathways) allowed to map and perceive chemical similarities between metabolic pathways even for pathways of different types of metabolism and pathways that do not share similarities in terms of EC numbers. Mapping of PES by neural networks (NNs). In a first series of experiments, ensembles of Feed-Forward NNs (EnsFFNNs) and Associative Neural Networks (ASNNs) were trained to reproduce PES represented by the Lennard-Jones (LJ) analytical potential function. The accuracy of the method was assessed by comparing the results of molecular dynamics simulations (thermal, structural, and dynamic properties) obtained from the NNs-PES and from the LJ function. The results indicated that for LJ-type potentials, NNs can be trained to generate accurate PES to be used in molecular simulations. EnsFFNNs and ASNNs gave better results than single FFNNs. A remarkable ability of the NNs models to interpolate between distant curves and accurately reproduce potentials to be used in molecular simulations is shown. The purpose of the first study was to systematically analyse the accuracy of different NNs. Our main motivation, however, is reflected in the next study: the mapping of multidimensional PES by NNs to simulate, by Molecular Dynamics or Monte Carlo, the adsorption and self-assembly of solvated organic molecules on noble-metal electrodes. Indeed, for such complex and heterogeneous systems the development of suitable analytical functions that fit quantum mechanical interaction energies is a non-trivial or even impossible task. The data consisted of energy values, from Density Functional Theory (DFT) calculations, at different distances, for several molecular orientations and three electrode adsorption sites. The results indicate that NNs require a data set large enough to cover well the diversity of possible interaction sites, distances, and orientations. NNs trained with such data sets can perform equally well or even better than analytical functions. Therefore, they can be used in molecular simulations, particularly for the ethanol/Au (111) interface which is the case studied in the present Thesis. Once properly trained, the networks are able to produce, as output, any required number of energy points for accurate interpolations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the use of multidimensional scaling in the evaluation of controller performance. Several nonlinear systems are analyzed based on the closed loop time response under the action of a reference step input signal. Three alternative performance indices, based on the time response, Fourier analysis, and mutual information, are tested. The numerical experiments demonstrate the feasibility of the proposed methodology and motivate its extension for other performance measures and new classes of nonlinearities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advantageous use of fractional calculus (FC) in the modeling and control of many dynamical systems has been recognized. In this paper, we study the control of a heat diffusion system based on the application of the FC concepts. Several algorithms are investigated and compared, when integrated within a Smith predictor control structure. Simulations are presented assessing the performance of the proposed fractional algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is important to understand and forecast a typical or a particularly household daily consumption in order to design and size suitable renewable energy systems and energy storage. In this research for Short Term Load Forecasting (STLF) it has been used Artificial Neural Networks (ANN) and, despite the consumption unpredictability, it has been shown the possibility to forecast the electricity consumption of a household with certainty. The ANNs are recognized to be a potential methodology for modeling hourly and daily energy consumption and load forecasting. Input variables such as apartment area, numbers of occupants, electrical appliance consumption and Boolean inputs as hourly meter system were considered. Furthermore, the investigation carried out aims to define an ANN architecture and a training algorithm in order to achieve a robust model to be used in forecasting energy consumption in a typical household. It was observed that a feed-forward ANN and the Levenberg-Marquardt algorithm provided a good performance. For this research it was used a database with consumption records, logged in 93 real households, in Lisbon, Portugal, between February 2000 and July 2001, including both weekdays and weekend. The results show that the ANN approach provides a reliable model for forecasting household electric energy consumption and load profile. © 2014 The Author.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The trajectory planning of redundant robots is an important area of research and efficient optimization algorithms have been investigated in the last years. This paper presents a new technique that combines the closed-loop pseudoinverse method with genetic algorithms. In this case the trajectory planning is formulated as an optimization problem with constraints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The trajectory planning of redundant robots is an important area of research and efficient optimization algorithms are needed. The pseudoinverse control is not repeatable, causing drift in joint space which is undesirable for physical control. This paper presents a new technique that combines the closed-loop pseudoinverse method with genetic algorithms, leading to an optimization criterion for repeatable control of redundant manipulators, and avoiding the joint angle drift problem. Computer simulations performed based on redundant and hyper-redundant planar manipulators show that, when the end-effector traces a closed path in the workspace, the robot returns to its initial configuration. The solution is repeatable for a workspace with and without obstacles in the sense that, after executing several cycles, the initial and final states of the manipulator are very close.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fractional calculus (FC) is widely used in most areas of science and engineering, being recognized its ability to yield a superior modeling and control in many dynamical systems. In this perspective, this article illustrates two applications of FC in the area of control systems. Firstly, is presented a methodology of tuning PID controllers that gives closed-loop systems robust to gain variations. After, a fractional-order PID controller is proposed for the control of an hexapod robot with three dof legs. In both cases, it is demonstrated the system's superior performance by using the FC concepts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase diagram of a simple model with two patches of type A and ten patches of type B (2A10B) on the face centred cubic lattice has been calculated by simulations and theory. Assuming that there is no interaction between the B patches the behavior of the system can be described in terms of the ratio of the AB and AA interactions, r. Our results show that, similarly to what happens for related off-lattice and two-dimensional lattice models, the liquid-vapor phase equilibria exhibit reentrant behavior for some values of the interaction parameters. However, for the model studied here the liquid-vapor phase equilibria occur for values of r lower than 1/3, a threshold value which was previously thought to be universal for 2AnB models. In addition, the theory predicts that below r = 1/3 (and above a new condensation threshold which is < 1/3) the reentrant liquid-vapor equilibria are so extreme that it exhibits a closed loop with a lower critical point, a very unusual behavior in single-component systems. An order-disorder transition is also observed at higher densities than the liquid-vapor equilibria, which shows that the liquid-vapor reentrancy occurs in an equilibrium region of the phase diagram. These findings may have implications in the understanding of the condensation of dipolar hard spheres given the analogy between that system and the 2AnB models considered here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The trajectory planning of redundant robots is an important area of research and efficient optimization algorithms are needed. This paper presents a new technique that combines the closed-loop pseudoinverse method with genetic algorithms. The results are compared with a genetic algorithm that adopts the direct kinematics. In both cases the trajectory planning is formulated as an optimization problem with constraints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fuzzy logic controllers (FLC) are intelligent systems, based on heuristic knowledge, that have been largely applied in numerous areas of everyday life. They can be used to describe a linear or nonlinear system and are suitable when a real system is not known or too difficult to find their model. FLC provide a formal methodology for representing, manipulating and implementing a human heuristic knowledge on how to control a system. These controllers can be seen as artificial decision makers that operate in a closed-loop system, in real time. The main aim of this work was to develop a single optimal fuzzy controller, easily adaptable to a wide range of systems – simple to complex, linear to nonlinear – and able to control all these systems. Due to their efficiency in searching and finding optimal solution for high complexity problems, GAs were used to perform the FLC tuning by finding the best parameters to obtain the best responses. The work was performed using the MATLAB/SIMULINK software. This is a very useful tool that provides an easy way to test and analyse the FLC, the PID and the GAs in the same environment. Therefore, it was proposed a Fuzzy PID controller (FL-PID) type namely, the Fuzzy PD+I. For that, the controller was compared with the classical PID controller tuned with, the heuristic Ziegler-Nichols tuning method, the optimal Zhuang-Atherton tuning method and the GA method itself. The IAE, ISE, ITAE and ITSE criteria, used as the GA fitness functions, were applied to compare the controllers performance used in this work. Overall, and for most systems, the FL-PID results tuned with GAs were very satisfactory. Moreover, in some cases the results were substantially better than for the other PID controllers. The best system responses were obtained with the IAE and ITAE criteria used to tune the FL-PID and PID controllers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with a hierarchical structure composed by an event-based supervisor in a higher level and two distinct proportional integral (PI) controllers in a lower level. The controllers are applied to a variable speed wind energy conversion system with doubly-fed induction generator, namely, the fuzzy PI control and the fractional-order PI control. The event-based supervisor analyses the operation state of the wind energy conversion system among four possible operational states: park, start-up, generating or brake and sends the operation state to the controllers in the lower level. In start-up state, the controllers only act on electric torque while pitch angle is equal to zero. In generating state, the controllers must act on the pitch angle of the blades in order to maintain the electric power around the nominal value, thus ensuring that the safety conditions required for integration in the electric grid are met. Comparisons between fuzzy PI and fractional-order PI pitch controllers applied to a wind turbine benchmark model are given and simulation results by Matlab/Simulink are shown. From the results regarding the closed loop point of view, fuzzy PI controller allows a smoother response at the expense of larger number of variations of the pitch angle, implying frequent switches between operational states. On the other hand fractional-order PI controller allows an oscillatory response with less control effort, reducing switches between operational states. (C) 2015 Elsevier Ltd. All rights reserved.