710 resultados para cingulate gyrus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The brain reward circuitry innervated by dopamine is critically disturbed in schizophrenia. This study aims to investigate the role of dopamine-related brain activity during prediction of monetary reward and loss in first episode schizophrenia patients. Methods We measured blood–oxygen-level dependent (BOLD) activity in 10 patients with schizophrenia (SCH) and 12 healthy controls during dopamine depletion with α-methylparatyrosine (AMPT) and during a placebo condition (PLA). Results AMPT reduced the activation of striatal and cortical brain regions in SCH. In SCH vs. controls reduced activation was found in the AMPT condition in several regions during anticipation of reward and loss, including areas of the striatum and frontal cortex. In SCH vs. controls reduced activation of the superior temporal gyrus and posterior cingulate was observed in PLA during anticipation of rewarding stimuli. PLA patients had reduced activation in the ventral striatum, frontal and cingulate cortex in anticipation of loss. The findings of reduced dopamine-related brain activity during AMPT were verified by reduced levels of dopamine in urine, homovanillic-acid in plasma and increased prolactin levels. Conclusions Our results indicate that dopamine depletion affects functioning of the cortico-striatal reward circuitry in SCH. The findings also suggest that neuronal functions associated with dopamine neurotransmission and attribution of salience to reward predicting stimuli are altered in schizophrenia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inappropriate response tendencies may be stopped via a specific fronto/basal ganglia/primary motor cortical network. We sought to characterize the functional role of two regions in this putative stopping network, the right inferior frontal gyrus (IFG) and the primary motor cortex (M1), using electocorticography from subdural electrodes in four patients while they performed a stop-signal task. On each trial, a motor response was initiated, and on a minority of trials a stop signal instructed the patient to try to stop the response. For each patient, there was a greater right IFG response in the beta frequency band ( approximately 16 Hz) for successful versus unsuccessful stop trials. This finding adds to evidence for a functional network for stopping because changes in beta frequency activity have also been observed in the basal ganglia in association with behavioral stopping. In addition, the right IFG response occurred 100-250 ms after the stop signal, a time range consistent with a putative inhibitory control process rather than with stop-signal processing or feedback regarding success. A downstream target of inhibitory control is M1. In each patient, there was alpha/beta band desynchronization in M1 for stop trials. However, the degree of desynchronization in M1 was less for successfully than unsuccessfully stopped trials. This reduced desynchronization on successful stop trials could relate to increased GABA inhibition in M1. Together with other findings, the results suggest that behavioral stopping is implemented via synchronized activity in the beta frequency band in a right IFG/basal ganglia network, with downstream effects on M1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent evidence suggests that increased psychophysiological response to negatively valenced emotional stimuli found in major depressive disorder (MDD) may be associated with reduced catecholaminergic neurotransmission. Fourteen unmedicated, remitted subjects with MDD (RMDD) and 13 healthy control subjects underwent catecholamine depletion with oral α-methyl-para-tyrosine (AMPT) in a randomized, placebo-controlled, double-blind crossover trial. Subjects were exposed to fearful (FF) and neutral faces (NF) during a scan with [15O]H2O positron emission tomography to assess the brain-catecholamine interaction in brain regions previously associated with emotional face processing. Treatment with AMPT resulted in significantly increased, normalized cerebral blood flow (CBF) in the left inferior temporal gyrus (ITG) and significantly decreased CBF in the right cerebellum across conditions and groups. In RMDD, flow in the left posterior cingulate cortex (PCC) increased significantly in the FF compared to the NF condition after AMPT, but remained unchanged after placebo, whereas healthy controls showed a significant increase under placebo and a significant decrease under AMPT in this brain region. In the left dorsolateral prefrontal cortex (DLPFC), flow decreased significantly in the FF compared to the NF condition under AMPT, and increased significantly under placebo in RMDD, whereas healthy controls showed no significant differences. Differences between AMPT and placebo of within-session changes in worry-symptoms were positively correlated with the corresponding changes in CBF in the right subgenual prefrontal cortex in RMDD. In conclusion, this study provided evidence for a catecholamine-related modulation of the neural responses to FF expressions in the left PCC and the left DLPFC in subjects with RMDD that might constitute a persistent, trait-like abnormality in MDD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuropathic pain caused by peripheral nerve injury is a debilitating neurological condition of high clinical relevance. On the cellular level, the elevated pain sensitivity is induced by plasticity of neuronal function along the pain pathway. Changes in cortical areas involved in pain processing contribute to the development of neuropathic pain. Yet, it remains elusive which plasticity mechanisms occur in cortical circuits. We investigated the properties of neural networks in the anterior cingulate cortex (ACC), a brain region mediating affective responses to noxious stimuli. We performed multiple whole-cell recordings from neurons in layer 5 (L5) of the ACC of adult mice after chronic constriction injury of the sciatic nerve of the left hindpaw and observed a striking loss of connections between excitatory and inhibitory neurons in both directions. In contrast, no significant changes in synaptic efficacy in the remaining connected pairs were found. These changes were reflected on the network level by a decrease in the mEPSC and mIPSC frequency. Additionally, nerve injury resulted in a potentiation of the intrinsic excitability of pyramidal neurons, whereas the cellular properties of interneurons were unchanged. Our set of experimental parameters allowed constructing a neuronal network model of L5 in the ACC, revealing that the modification of inhibitory connectivity had the most profound effect on increased network activity. Thus, our combined experimental and modeling approach suggests that cortical disinhibition is a fundamental pathological modification associated with peripheral nerve damage. These changes at the cortical network level might therefore contribute to the neuropathic pain condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial meningitis causes neurological sequelae in up to 50% of survivors. Two pathogens known for their propensity to cause severe neurological damage are Streptococcus pneumoniae and group B streptococci. Some forms of neuronal sequelae, such as learning and memory deficits, have been associated with neuronal injury in the hippocampus. To learn more about hippocampal injury in meningitis, we performed a comparative study in bacterial meningitis due to S. pneumoniae and group B streptococcus, in which 11-day-old infant rats were infected intracisternally with either of the two pathogens. Histopathological examination of the neuronal injury in the dentate gyrus of the hippocampus showed that S. pneumoniae caused predominantly classical apoptotic cell death. Cells undergoing apoptosis were located only in the subgranular zone and stained positive for activated caspase-3 and TUNEL. Furthermore, dividing progenitor cells seemed particularly sensitive to this form of cell death. Group B streptococcus was mainly responsible for a caspase-3-independent (and TUNEL-negative) form of cell death. Compared with the morphological features found in apoptosis (e.g., apoptotic bodies), this form of neuronal death was characterized by clusters of uniformly shrunken cells. It affected the dentate gyrus throughout the blade, showing no preferences for immature or mature neurons. Thus, depending on the infecting agent, bacterial meningitis causes two distinct forms of cell injury in the dentate gyrus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vestibular system contributes to the control of posture and eye movements and is also involved in various cognitive functions including spatial navigation and memory. These functions are subtended by projections to a vestibular cortex, whose exact location in the human brain is still a matter of debate (Lopez and Blanke, 2011). The vestibular cortex can be defined as the network of all cortical areas receiving inputs from the vestibular system, including areas where vestibular signals influence the processing of other sensory (e.g. somatosensory and visual) and motor signals. Previous neuroimaging studies used caloric vestibular stimulation (CVS), galvanic vestibular stimulation (GVS), and auditory stimulation (clicks and short-tone bursts) to activate the vestibular receptors and localize the vestibular cortex. However, these three methods differ regarding the receptors stimulated (otoliths, semicircular canals) and the concurrent activation of the tactile, thermal, nociceptive and auditory systems. To evaluate the convergence between these methods and provide a statistical analysis of the localization of the human vestibular cortex, we performed an activation likelihood estimation (ALE) meta-analysis of neuroimaging studies using CVS, GVS, and auditory stimuli. We analyzed a total of 352 activation foci reported in 16 studies carried out in a total of 192 healthy participants. The results reveal that the main regions activated by CVS, GVS, or auditory stimuli were located in the Sylvian fissure, insula, retroinsular cortex, fronto-parietal operculum, superior temporal gyrus, and cingulate cortex. Conjunction analysis indicated that regions showing convergence between two stimulation methods were located in the median (short gyrus III) and posterior (long gyrus IV) insula, parietal operculum and retroinsular cortex (Ri). The only area of convergence between all three methods of stimulation was located in Ri. The data indicate that Ri, parietal operculum and posterior insula are vestibular regions where afferents converge from otoliths and semicircular canals, and may thus be involved in the processing of signals informing about body rotations, translations and tilts. Results from the meta-analysis are in agreement with electrophysiological recordings in monkeys showing main vestibular projections in the transitional zone between Ri, the insular granular field (Ig), and SII.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Meditation is a self-induced and willfully initiated practice that alters the state of consciousness. The meditation practice of Zazen, like many other meditation practices, aims at disregarding intrusive thoughts while controlling body posture. It is an open monitoring meditation characterized by detached moment-to-moment awareness and reduced conceptual thinking and self-reference. Which brain areas differ in electric activity during Zazen compared to task-free resting? Since scalp electroencephalography (EEG) waveforms are reference-dependent, conclusions about the localization of active brain areas are ambiguous. Computing intracerebral source models from the scalp EEG data solves this problem. In the present study, we applied source modeling using low resolution brain electromagnetic tomography (LORETA) to 58-channel scalp EEG data recorded from 15 experienced Zen meditators during Zazen and no-task resting. Zazen compared to no-task resting showed increased alpha-1 and alpha-2 frequency activity in an exclusively right-lateralized cluster extending from prefrontal areas including the insula to parts of the somatosensory and motor cortices and temporal areas. Zazen also showed decreased alpha and beta-2 activity in the left angular gyrus and decreased beta-1 and beta-2 activity in a large bilateral posterior cluster comprising the visual cortex, the posterior cingulate cortex and the parietal cortex. The results include parts of the default mode network and suggest enhanced automatic memory and emotion processing, reduced conceptual thinking and self-reference on a less judgmental, i.e., more detached moment-to-moment basis during Zazen compared to no-task resting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Individual risk preferences have a large influence on decisions, such as financial investments, career and health choices, or gambling. Decision making under risk has been studied both behaviorally and on a neural level. It remains unclear, however, how risk attitudes are encoded and integrated with choice. Here, we investigate how risk preferences are reflected in neural regions known to process risk. We collected functional magnetic resonance images of 56 human subjects during a gambling task (Preuschoff et al., 2006). Subjects were grouped into risk averters and risk seekers according to the risk preferences they revealed in a separate lottery task. We found that during the anticipation of high-risk gambles, risk averters show stronger responses in ventral striatum and anterior insula compared to risk seekers. In addition, risk prediction error signals in anterior insula, inferior frontal gyrus, and anterior cingulate indicate that risk averters do not dissociate properly between gambles that are more or less risky than expected. We suggest this may result in a general overestimation of prospective risk and lead to risk avoidance behavior. This is the first study to show that behavioral risk preferences are reflected in the passive evaluation of risky situations. The results have implications on public policies in the financial and health domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE A case is presented and a systematic review of the literature is provided to update our current knowledge of induction of fear by cortical stimulation. METHODS We present a case of refractory epilepsy associated with a lesion where fear could be induced by intraoperative electrical stimulation of the posterior inner part of the superior temporal gyrus. We performed a systematic review of the literature using PubMed with the key words "epilepsy AND emotion", "cortical stimulation AND emotion," and "human brain stimulation AND behavior". RESULTS Intraoperative cortical stimulation of the inner part of the posterior superior temporal gyrus reliably induced fear and progressive screaming behavior. Stimulation through subdural grid electrodes did not induce this phenomenon. A systematic review of the literature identified fear induction by stimulation of different widespread cortical areas including the temporal pole, the insula, and the anterior cingulate cortex. The posterior part of the superior temporal gyrus has so far not been associated with fear induction after electrical stimulation. CONCLUSION Although our observation suggests that this area of the brain could be part of a network involved in the elicitation of fear, dysfunction of this network induced by epilepsy could also explain the observed phenomenon. Electrophysiologic and imaging studies must be conducted to improve our understanding of the cortical networks forming the neuroanatomical substrate of higher brain functions and experiences such as fear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

People say they enjoy both seeing a preferred social group succeed and seeing an adversary social group fail. At the same time, they state they dislike seeing a preferred social group fail and seeing an adversary social group succeed. The current magnetic resonance imaging study investigated whether-and if so, how-such similarities in reported feeling states are reflected in neural activities. American football fans anticipated success and failure situations for their favorite or their adversary teams. The data support the idea that feeling similarities and divergences expressed in verbal reports carry with them significant neural similarities and differences, respectively. Desired (favorite team likely to win and adversary team likely to lose) rather than undesired (favorite team likely to lose and adversary team likely to win) outcomes were associated with heightened activity in the supramarginal gyrus, posterior cingulate cortex, insula, and cerebellum. Precuneus activity additionally distinguished anticipated desirable outcomes for favorite versus adversary teams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Major depressive disorder (MDD) is associated with structural and functional alterations in the prefrontal cortex (PFC) and anterior cingulate cortex (ACC). Enhanced ACC activity at rest (measured using various imaging methodologies) is found in treatment-responsive patients and is hypothesized to bolster treatment response by fostering adaptive rumination. However, whether structural changes influence functional coupling between fronto-cingulate regions and ACC regional homogeneity (ReHo) and whether these functional changes are related to levels of adaptive rumination and treatment response is still unclear. Cortical thickness and ReHo maps were calculated in 21 unmedicated depressed patients and 35 healthy controls. Regions with reduced cortical thickness defined the seeds for the subsequent functional connectivity (FC) analyses. Patients completed the Response Style Questionnaire, which provided a measure of adaptive rumination associated with better response to psychotherapy. Compared with controls, depressed patients showed thinning of the right anterior PFC, increased prefrontal connectivity with the supragenual ACC (suACC), and higher ReHo in the suACC. The suACC clusters of increased ReHo and FC spatially overlapped. In depressed patients, suACC ReHo scores positively correlated with PFC thickness and with FC strength. Moreover, stronger fronto-cingulate connectivity was related to higher levels of adaptive rumination. Greater suACC ReHo and connectivity with the right anterior PFC seem to foster adaptive forms of self-referential processing associated with better response to psychotherapy, whereas prefrontal thinning impairs the ability of depressed patients to engage the suACC during a major depressive episode. Bolstering the function of the suACC may represent a potential target for treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION The neural correlates of impaired performance of gestures are currently unclear. Lesion studies showed variable involvement of the ventro-dorsal stream particularly left inferior frontal gyrus (IFG) in gesture performance on command. However, findings cannot be easily generalized as lesions may be biased by the architecture of vascular supply and involve brain areas beyond the critical region. The neuropsychiatric syndrome of schizophrenia shares apraxic-like errors and altered brain structure without macroanatomic lesions. Schizophrenia may therefore qualify as a model disorder to test neural correlates of gesture impairments. METHODS We included 45 schizophrenia patients and 44 healthy controls in the study to investigate the structural brain correlates of defective gesturing in schizophrenia using voxel based morphometry. Gestures were tested in two domains: meaningful gestures (transitive and intransitive) on verbal command and imitation of meaningless gestures. Cut-off scores were used to separate patients with deficits, patients without deficits and controls. Group differences in gray matter (GM) volume were explored in an ANCOVA. RESULTS Patients performed poorer than controls in each gesture category (p < .001). Patients with deficits in producing meaningful gestures on command had reduced GM predominantly in left IFG, with additional involvement of right insula and anterior cingulate cortex. Patients with deficits differed from patients without deficits in right insula, inferior parietal lobe (IPL) and superior temporal gyrus. CONCLUSIONS Impaired performance of meaningful gestures on command was linked to volume loss predominantly in the praxis network in schizophrenia. Thus, the behavioral similarities between apraxia and schizophrenia are paralleled by structural alterations. However, few associations between behavioral impairment and structural brain alterations appear specific to schizophrenia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research demonstrates cholinergic modulation of thalamic input into the limbic cortex. A projection from the mediodorsal thalamus (MD) to the anterior cingulate cortex was defined anatomically and physiologically. Injections of horse-radish peroxidase into the anterior cingulate cortex labels neurons in the lateral, parvocellular, region of MD. Electrical Stimulation of this area produces a complex field potential in the anterior cingulate cortex which was further characterized by current density analysis and single cell recordings.^ The monsynaptic component of the response was identified as a large negative field which is maximal in layer IV of the anterior cingulate cortex. This response shows remarkable tetanic potentiation of frequencies near 7 Hz. During a train of 50 or more stimuli, the response would grow quickly and remain at a fairly stable potentiated level throughout the train.^ Cholinergic modulation of this thalamic response was demonstrated by iontophoretic application of the cholinergic agonist carbachol decreased the effectiveness of the thalamic imput by rapidly attenuation the response during a train of stimuli. The effect was apparently mediated by muscarinic receptors since the effect of carbachol was blocked by atropine but not by hexamethonium.^ To determine the source of the cingulate cortex cholinergic innervation, lesions were made in the anterior and medial thalamus and in the nucleus of the diagonal band of Broca. The effects of these lesions on choline acetyltranferase activity in the cingulate cortex were determined by a micro-radio-enzymatical assay. Only the lesions of the nucleus of the diagonal band significantly decreased the choline acetyltransferase activity in the cingulate cortex regions. Therefore, the diagonal band appears to be a major source of sensory cholinergic innervation and may be involved in gating of sensory information from the thalamus into the limbic cortex. Attempts to modulate the cingulate response to MD stimulation with electrical stimulation of the diagonal band, however were not successful.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-term potentiation (LTP) of excitatory transmission is an important candidate cellular mechanism for the storage of memories in the mammalian brain. The subcellular phenomena that underlie the persistent increase in synaptic strength, however, are incompletely understood. A potentially powerful method to detect a presynaptic increase in glutamate release is to examine the effect of LTP induction on the rate at which the use-dependent blocker MK-801 attenuates successive N-methyl-d-aspartic acid (NMDA) receptor-mediated synaptic signals. This method, however, has given apparently contradictory results when applied in hippocampal CA1. The inconsistency could be explained if NMDA receptors were opened by glutamate not only released from local presynaptic terminals, but also diffusing from synapses on neighboring cells where LTP was not induced. Here we examine the effect of pairing-induced LTP on the MK-801 blocking rate in two afferent inputs to dentate granule cells. LTP in the medial perforant path is associated with a significant increase in the MK-801 blocking rate, implying a presynaptic increase in glutamate release probability. An enhanced MK-801 blocking rate is not seen, however, in the lateral perforant path. This result still could be compatible with a presynaptic contribution to LTP in the lateral perforant path if intersynaptic cross-talk occurred. In support of this hypothesis, we show that NMDA receptors consistently sense more quanta of glutamate than do α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. In the medial perforant path, in contrast, there is no significant difference in the number of quanta mediated by the two receptors. These results support a presynaptic contribution to LTP and imply that differences in intersynaptic cross-talk can complicate the interpretation of experiments designed to detect changes in transmitter release.