939 resultados para childhood acute lymphoblastic leukemia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute promyelocytic leukemia (APL) is associated with a reciprocal and balanced translocation involving the retinoic acid receptor-alpha (RARalpha). All-trans retinoic acid (ATRA) is used to treat APL and is a potent morphogen that regulates HOX gene expression in embryogenesis and organogenesis. HOX genes are also involved in hematopoiesis and leukemogenesis. Thirty-nine mammalian HOX genes have been identified and classified into 13 paralogous groups clustered on 4 chromosomes. They encode a complex net-Work of transcription regulatory proteins whose precise targets remain poorly understood. The overall function of the network appears to be dictated by gene dosage. To investigate the mechanisms involved in HOX gene regulation in hematopoiesis and leukemogenesis by precise measurement of individual HOX genes, a small-array real-time HOX (SMART-HOX) quantitative polymerase chain reaction (PCR) platform was designed and validated. Application of SMART-HOX to 16 APL bone marrow samples revealed a global down-regulation of 26 HOX genes compared with normal controls. HOX gene expression was also altered during differentiation induced by ATRA in the PML-RARalpha(+) NB4 cell line. PML-RARalpha, fusion proteins have been reported to act as part of a repressor complex during myelold cell differentiation, and a model linking HOX gene expression to this PML-RARalpha repressor complex is now proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Microarray Innovations in Leukemia study assessed the clinical utility of gene expression profiling as a single test to subtype leukemias into conventional categories of myeloid and lymphoid malignancies. METHODS: The investigation was performed in 11 laboratories across three continents and included 3,334 patients. An exploratory retrospective stage I study was designed for biomarker discovery and generated whole-genome expression profiles from 2,143 patients with leukemias and myelodysplastic syndromes. The gene expression profiling-based diagnostic accuracy was further validated in a prospective second study stage of an independent cohort of 1,191 patients. RESULTS: On the basis of 2,096 samples, the stage I study achieved 92.2% classification accuracy for all 18 distinct classes investigated (median specificity of 99.7%). In a second cohort of 1,152 prospectively collected patients, a classification scheme reached 95.6% median sensitivity and 99.8% median specificity for 14 standard subtypes of acute leukemia (eight acute lymphoblastic leukemia and six acute myeloid leukemia classes, n = 693). In 29 (57%) of 51 discrepant cases, the microarray results had outperformed routine diagnostic methods. CONCLUSION: Gene expression profiling is a robust technology for the diagnosis of hematologic malignancies with high accuracy. It may complement current diagnostic algorithms and could offer a reliable platform for patients who lack access to today's state-of-the-art diagnostic work-up. Our comprehensive gene expression data set will be submitted to the public domain to foster research focusing on the molecular understanding of leukemias

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the potential role of Pim2 as a cooperative oncogene has been well described in lymphoma, its role in leukemia has remained largely unexplored. Here we show that high expression of Pim2 is observed in patients with acute promyelocytic leukemia (APL). To further characterize the cooperative role of Pim2 with promyelocytic leukemia/retinoic acid receptor alpha (PML/RAR alpha), we used a well-established PML-RAR alpha (PR alpha) mouse model. Pim2 coexpression in PR alpha-positive hematopoietic progenitor cells (HPCs) induces leukemia in recipient mice after a short latency. Pim2-PR alpha cells were able to repopulate mice in serial transplantations and to induce disease in all recipients. Neither Pim2 nor PR alpha alone was sufficient to induce leukemia upon transplantation in this model. The disease induced by Pim2 overexpression in PR alpha cells contained a slightly higher fraction of immature myeloid cells, compared with the previously described APL disease induced by PR alpha. However, it also clearly resembled an APL-like phenotype and showed signs of differentiation upon all-trans retinoic acid (ATRA) treatment in vitro. These results support the hypothesis that Pim2, which is also a known target of Flt3-ITD (another gene that cooperates with PML-RAR alpha), cooperates with PR alpha to induce APL-like disease. (Blood. 2010; 115(22): 4507-4516)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The catalytic subunit of human telomerase (TERT) is highly expressed in cancer cells, and correlates with complex cytogenetics and disease severity in acute myeloid leukemia (AML). The TERT promoter is situated within a large CpG island, suggesting that expression is methylation-sensitive. Studies suggest a correlation between hypermethylation and TERT overexpression. We investigated the relationship between TERT promoter methylation and expression and telomerase activity in human leukemia and lymphoma cell lines. DAC-induced demethylation and cell death were observed in all three cell lines, as well as telomere shortening in HL-60 cells. DAC treatment reduced TERT expression and telomerase activity in OCI/AML3 and HL-60 cells, but not in U937 cells. Control U937 cells expressed lower levels of TERT mRNA, carried a highly methylated TERT core promoter, and proved more resistant to DAC-induced repression of TERT expression and cell death. AML patients had significantly lower methylation levels at several CpGs than "well elderly" individuals. This study, the first to investigate the relationship between TERT methylation and telomerase activity in leukemia cells, demonstrated a differential methylation pattern and response to DAC in three AML cell lines. We suggest that, although DAC treatment reduces TERT expression and telomerase activity, this is unlikely to occur via direct demethylation of the TERT promoter. However, further investigations on the regions spanning CpGs 7-12 and 14-16 may reveal valuable information regarding transcriptional regulation of TERT.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute promyelocytic leukemia (APL) is associated with a reciprocal and balanced translocation involving the retinoic acid receptor-alpha (RARalpha). All-trans retinoic acid (ATRA) is used to treat APL and is a potent morphogen that regulates HOX gene expression in embryogenesis and organogenesis. HOX genes are also involved in hematopoiesis and leukemogenesis. Thirty-nine mammalian HOX genes have been identified and classified into 13 paralogous groups clustered on 4 chromosomes. They encode a complex network of transcription regulatory proteins whose precise targets remain poorly understood. The overall function of the network appears to be dictated by gene dosage. To investigate the mechanisms involved in HOX gene regulation in hematopoiesis and leukemogenesis by precise measurement of individual HOX genes, a small-array real-time HOX (SMART-HOX) quantitative polymerase chain reaction (PCR) platform was designed and validated. Application of SMART-HOX to 16 APL bone marrow samples revealed a global down-regulation of 26 HOX genes compared with normal controls. HOX gene expression was also altered during differentiation induced by ATRA in the PML-RARalpha(+) NB4 cell line. PML-RARalpha fusion proteins have been reported to act as part of a repressor complex during myeloid cell differentiation, and a model linking HOX gene expression to this PML-RARalpha repressor complex is now proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cytogenetically normal subtype of acute myeloid leukemia (CN-AML) is associated with Intermediate risk which complicates therapeutic options. Lower overall HOX/TALE expression appears to correlate with more favorable prognosis/better response to treatment in some leukemias and solid cancer. The functional significance of the associated gene expression and response to chemotherapy is not known. Three independent microarray datasets obtained from large patient cohorts along with quantitative PCR validation was used to identify a four gene HOXA/TALE signature capable of prognostic stratification. Biochemical analysis was used to identify interactions between the four encoded proteins and targeted knockdown used to examine the functional importance of sustained expression of the signature in leukemia maintenance and response to chemotherapy. An eleven HOXA/TALE code identified in an Intermediate risk (n=315) compared to a Favourable group of patients (n=105) was reduced to a four gene signature of HOXA6, HOXA9, PBX3 and MEIS1 by iterative analysis of independent platforms. This signature maintained the Favorable/Intermediate risk partition and where applicable, correlated with overall survival in CN-AML. We further show that cell growth and function is dependent on maintained levels of these core genes and that direct targeting of HOXA/PBX3 sensitizes CN-AML cells to standard chemotherapy. Together the data support a key role for HOXA/TALE in CN-AML and demonstrate that targeting of clinically significant HOXA/PBX3 elements may provide therapeutic benefit to these patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Better treatment is required for older patients with acute myeloid leukemia (AML) not considered fit for intensive chemotherapy. We report a randomized comparison of lowdose Ara-C (LDAC) vs the novel nucleoside, clofarabine, in untreated older patients with AML and high-risk myelodysplastic syndrome (MDS). A total of 406 patients with de novo (62%), secondary disease (24%), or high-risk MDS (>10% marrow blasts) (15%), median age 74 years, were randomized to LDAC 20 mg twice daily for 10 days every 6 weeks or clofarabine 20 mg/m2 on days 1 to 5, both for up to 4 courses. These patients had more adverse demographics than contemporaneous intensively treated patients. The overall remission rate was 28%, and 2-year survival was 13%. Clofarabine significantly improved complete remission (22% vs 12%; hazard ratio [HR] 5 0.47 [0.28-0.79]; P 5 .005) and overall response (38% vs 19%; HR 5 0.41 [0.26-0.62]; P < .0001), but there was no difference in overall survival, explained by poorer survival in the clofarabine patients who did not gain complete remission and also following relapse. Clofarabine was more myelosuppressive and required more supportive care. Although clofarabine doubled remission rates, overall survival was not improved overall or in any subgroup. The treatment of patients of the type treated here remains a major unmet need. This trial was registered at www.clinicaltrials.gov as #ISRCTN 11036523.