965 resultados para chemical composition and structure
Resumo:
Geological and geophysical investigations carried out within the Hokkaido Rise showed that intrusives composing outcrops of the crystalline basement on the ocean floor form a continuous series from monzonites and diorite-monzonites to granites with prevalence of granodiorites with stable mineralogical association: biotite - hornblende - K-feldspar. Acidic volcanic rocks are characterized by a similar mineralogical association with almost complete absence of plagioclase-pyroxene species. It seems that the Hokkaido Rise, as well as the marginal oceanic Zenkevich swell as a whole are not primary oceanic structural formations and have undergone a complex and long history of geological development with intense orogenic movements that occurred in Middle Cretaceous and preceded subalkaline basalt outpouring during postorogenic subsidence of the Earth crust.
Resumo:
The Middle Paleozoic complex consists of terrigenous and volcanogenic materials metamorphized in greenschist facies. Clastic rocks have arkosic composition and are formed by alteration of basalts and metamorphic rocks. Metaeffusives were formed from basaltoid products of oceanic tholeiite magma indicating that underwater rise structures of the northern Sea of Japan were emplaced on the oceanic crust.
Resumo:
"October, 1989."
Resumo:
The caseins (alpha(s1), alpha(s2), beta, and kappa) are phosphoproteins present in bovine milk that have been studied for over a century and whose structures remain obscure. Here we describe the chemical synthesis and structure elucidation of the N-terminal segment (1-44) of bovine K-casein, the protein which maintains the micellar structure of the caseins. K-Casein (1-44) was synthesised by highly optimised Boc solid-phase peptide chemistry and characterised by mass spectrometry. Structure elucidation was carried out by circular dichroism and nuclear magnetic resonance spectroscopy. CD analysis demonstrated that the segment was ill defined in aqueous medium but in 30% trifluoroethanol it exhibited considerable helical structure. Further, NMR analysis showed the presence of a helical segment containing 26 residues which extends from Pro(8) to Arg(34). This is the first report which demonstrates extensive secondary structure within the casein class of proteins. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Different species and genotypes of Miscanthus were analysed to determine the influence of genotypic variation and harvest time on cell wall composition and the products which may be refined via pyrolysis. Wet chemical, thermo-gravimetric (TGA) and pyrolysis-gas chromatography–mass spectrometry (Py-GC–MS) methods were used to identify the main pyrolysis products and determine the extent to which genotypic differences in cell wall composition influence the range and yield of pyrolysis products. Significant genotypic variation in composition was identified between species and genotypes, and a clear relationship was observed between the biomass composition, yields of pyrolysis products, and the composition of the volatile fraction. Results indicated that genotypes other than the commercially cultivated Miscanthus x giganteus may have greater potential for use in bio-refining of fuels and chemicals and several genotypes were identified as excellent candidates for the generation of genetic mapping families and the breeding of new genotypes with improved conversion quality characteristics.
Resumo:
The major and some of the minor constituents and the rate of accumulation of manganese nodules in the western North Pacific were determined. Manganese concentration in the nodules ranged from 20 to 30 per cent in the acid soluble fraction. As to the rare earth concentration, enrichment of cerium was observed in the manganese nodule as compared with that in shales or sea water. Thorium to uranium ratio in the nodule ranged from 9.4 to 14.3, which was very much higher than that in sea water. From the distribution of excess ionium, excess protactinium and Io/Th ratio, a rate of accumulation of 7 mm per million years was obtained with the surface layer of several mm in thickness of the JEDS-4-E4 nodule.
Resumo:
The main terminal processes of organic matter mineralization in anoxic Black Sea sediments underlying the sulfidic water column are sulfate reduction in the upper 2-4 m and methanogenesis below the sulfate zone. The modern marine deposits comprise a ca. 1-m-deep layer of coccolith ooze and underlying sapropel, below which sea water ions penetrate deep down into the limnic Pleistocene deposits from >9000 years BP. Sulfate reduction rates have a subsurface maximum at the SO4[2-]-CH4 transition where H2S reaches maximum concentration. Because of an excess of reactive iron in the deep limnic deposits, most of the methane-derived H2S is drawn downward to a sulfidization front where it reacts with Fe(III) and with Fe2+ diffusing up from below. The H2S-Fe2+ transition is marked by a black band of amorphous iron sulfide above which distinct horizons of greigite and pyrite formation occur. The pore water gradients respond dynamically to environmental changes in the Black Sea with relatively short time constants of ca. 500 yr for SO4[2-] and 10 yr for H2S, whereas the FeS in the black band has taken ca. 3000 yr to accumulate. The dual diffusion interfaces of SO4[2-]-CH4 and H2S-Fe2+ cause the trapping of isotopically heavy iron sulfide with delta34S = +15 to +33 per mil at the sulfidization front. A diffusion model for sulfur isotopes shows that the SO4[2-] diffusing downward into the SO4[2-]-CH4 transition has an isotopic composition of +19 per mil, close to the +23 per mil of H2S diffusing upward. These isotopic compositions are, however, very different from the porewater SO4[2-] (+43 per mil) and H2S (-15 per mil) at the same depth. The model explains how methane-driven sulfate reduction combined with a deep H2S sink leads to isotopically heavy pyrite in a sediment open to diffusion. These results have general implications for the marine sulfur cycle and for the interpretation of sulfur isotopic data in modern sediments and in sedimentary rocks throughout earth's history.
(Table 1) Chemical composition and dated ages of detrital smectites in sediments at DSDP Site 43-386
Resumo:
The fixation of dissolved inorganic carbon (DIC) by marine phytoplankton provides an important feedback mechanism on concentrations of CO2 in the atmosphere. As a consequence it is important to determine whether oceanic primary productivity is susceptible to changing atmospheric CO2 levels Among numerous other factors, the acquisition of DIC by microalgae particularly in the polar seas is projected to have a significant effect on future phytoplanktonic production and hence atmospheric CO2 concentrations. Using the isotopic disequilibrium technique the contribution of different carbon species (CO2 and bicarbonate) to the overall DIC uptake and the extent to which external Carbonic Anhydrase (eCA) plays a role in facilitating DIC uptake was estimated. Simultaneous uptake of CO2 and HCO3- was observed in all cases, but the proportions in which different DIC species contributed to carbon assimilation varied considerably between stations. Bicarbonate as well as CO2 could be the major DIC source for local phytoplankton assemblages. There was a positive correlation between the contribution of CO2 to total DIC uptake and ambient concentration of CO2 in seawater suggesting that Southern Ocean microalgae could increase the proportion of CO2 uptake under future high atmospheric CO2 levels. Results will be discussed in view of metabolic costs related to DIC acquisition of Southern Ocean phytoplankton.
Resumo:
This study examined variations in the Fulton condition factor, chemical composition, and stable isotopes of carbon and nitrogen in the Brazilian freshwater fish cachara (Pseudoplatystoma fasciatum), comparing farmed and wild fish in different seasons. Values for energy, protein, moisture, and Fulton's condition factor were higher for farmed than for wild fish in the rainy season, indicating better nutritional quality; however, these differences were not observed in the dry season. Likewise, we found significant enhancement of delta(15)N in farmed fish in the rainy season but not in the dry season, whereas enhancement of delta(13)C was observed in both seasons. The combined measurement of delta(13)C and delta(15)N provided traceability under all conditions. Our findings show that stable isotope analysis of C and N can be used to trace cachara origin, and that seasonal variations need to be considered when applying chemical and isotopic authentication of fish and fish products. (C) 2010 Elsevier Ltd. All rights reserved.